1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
import os
import zipfile
from collections import defaultdict
from unittest.mock import patch
from parameterized import parameterized
from torchtext.datasets.qnli import QNLI
from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase
LABELS = ["entailment", "not_entailment"]
def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "QNLI")
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)
seed = 1
mocked_data = defaultdict(list)
for file_name in ("train.tsv", "dev.tsv", "test.tsv"):
txt_file = os.path.join(temp_dataset_dir, file_name)
with open(txt_file, "w", encoding="utf-8") as f:
f.write("index\tquestion\tsentence\tlabel\n")
for i in range(5):
label = seed % 2
rand_string_1 = get_random_unicode(seed)
rand_string_2 = get_random_unicode(seed + 1)
label_str = LABELS[label]
if file_name == "test.tsv":
dataset_line = (rand_string_1, rand_string_2)
f.write(f"{i}\t{rand_string_1}\t{rand_string_2}\n")
else:
dataset_line = (label, rand_string_1, rand_string_2)
f.write(f"{i}\t{rand_string_1}\t{rand_string_2}\t{label_str}\n")
# append line to correct dataset split
mocked_data[os.path.splitext(file_name)[0]].append(dataset_line)
seed += 1
compressed_dataset_path = os.path.join(base_dir, "QNLIv2.zip")
# create zip file from dataset folder
with zipfile.ZipFile(compressed_dataset_path, "w") as zip_file:
for file_name in ("train.tsv", "dev.tsv", "test.tsv"):
txt_file = os.path.join(temp_dataset_dir, file_name)
zip_file.write(txt_file, arcname=os.path.join("QNLI", file_name))
return mocked_data
class TestQNLI(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(os.path.join(cls.root_dir, "datasets"))
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
@parameterized.expand(["train", "test", "dev"])
def test_qnli(self, split):
dataset = QNLI(root=self.root_dir, split=split)
samples = list(dataset)
expected_samples = self.samples[split]
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)
@parameterized.expand(["train", "test", "dev"])
def test_qnli_split_argument(self, split):
dataset1 = QNLI(root=self.root_dir, split=split)
(dataset2,) = QNLI(root=self.root_dir, split=(split,))
for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
|