1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
import os
from unittest.mock import patch
from torchtext.datasets.qqp import QQP
from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase
def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "QQP")
os.makedirs(base_dir, exist_ok=True)
seed = 1
file_name = "quora_duplicate_questions.tsv"
txt_file = os.path.join(base_dir, file_name)
mocked_data = []
with open(txt_file, "w", encoding="utf-8") as f:
f.write("id\tqid1\tqid2\tquestion1\tquestion2\tis_duplicate\n")
for i in range(5):
label = seed % 2
rand_string_1 = get_random_unicode(seed)
rand_string_2 = get_random_unicode(seed + 1)
dataset_line = (label, rand_string_1, rand_string_2)
# append line to correct dataset split
mocked_data.append(dataset_line)
f.write(f"{i}\t{i}\t{i}\t{rand_string_1}\t{rand_string_2}\t{label}\n")
seed += 1
return mocked_data
class TestQQP(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(os.path.join(cls.root_dir, "datasets"))
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
def test_qqp(self) -> None:
dataset = QQP(root=self.root_dir)
samples = list(dataset)
expected_samples = self.samples
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)
|