1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
import os
import zipfile
from collections import defaultdict
from unittest.mock import patch
from torchtext.datasets.wikitext103 import WikiText103
from torchtext.datasets.wikitext2 import WikiText2
from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.parameterized_utils import nested_params
from ..common.torchtext_test_case import TorchtextTestCase
def _get_mock_dataset(root_dir, base_dir_name):
"""
root_dir: directory to the mocked dataset
base_dir_name: WikiText103 or WikiText2
"""
base_dir = os.path.join(root_dir, base_dir_name)
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)
seed = 1
mocked_data = defaultdict(list)
file_names = ("wiki.train.tokens", "wiki.valid.tokens", "wiki.test.tokens")
for file_name in file_names:
csv_file = os.path.join(temp_dataset_dir, file_name)
mocked_lines = mocked_data[file_name.split(".")[1]]
with open(csv_file, "w", encoding="utf-8") as f:
for i in range(5):
rand_string = get_random_unicode(seed)
dataset_line = f"{rand_string}\n"
f.write(dataset_line)
# append line to correct dataset split
mocked_lines.append(dataset_line)
seed += 1
if base_dir_name == WikiText103.__name__:
compressed_file = "wikitext-103-v1"
arcname_folder = "wikitext-103"
else:
compressed_file = "wikitext-2-v1"
arcname_folder = "wikitext-2"
compressed_dataset_path = os.path.join(base_dir, compressed_file + ".zip")
# create zip file from dataset folder
with zipfile.ZipFile(compressed_dataset_path, "w") as zip_file:
for file_name in file_names:
txt_file = os.path.join(temp_dataset_dir, file_name)
zip_file.write(txt_file, arcname=os.path.join(arcname_folder, file_name))
return mocked_data
class TestWikiTexts(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
@nested_params([WikiText103, WikiText2], ["train", "valid", "test"])
def test_wikitexts(self, wikitext_dataset, split):
expected_samples = _get_mock_dataset(
os.path.join(self.root_dir, "datasets"), base_dir_name=wikitext_dataset.__name__
)[split]
dataset = wikitext_dataset(root=self.root_dir, split=split)
samples = list(dataset)
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)
@nested_params([WikiText103, WikiText2], ["train", "valid", "test"])
def test_wikitexts_split_argument(self, wikitext_dataset, split):
# call `_get_mock_dataset` to create mock dataset files
_ = _get_mock_dataset(self.root_dir, wikitext_dataset.__name__)
dataset1 = wikitext_dataset(root=self.root_dir, split=split)
(dataset2,) = wikitext_dataset(root=self.root_dir, split=(split,))
for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
|