File: test_yelpreviews.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (91 lines) | stat: -rw-r--r-- 3,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import tarfile
from collections import defaultdict
from unittest.mock import patch

from torchtext.datasets.yelpreviewfull import YelpReviewFull
from torchtext.datasets.yelpreviewpolarity import YelpReviewPolarity

from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.parameterized_utils import nested_params
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir, base_dir_name):
    """
    root_dir: directory to the mocked dataset
    base_dir_name: YelpReviewPolarity or YelpReviewFull
    """
    base_dir = os.path.join(root_dir, base_dir_name)
    temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
    os.makedirs(temp_dataset_dir, exist_ok=True)

    seed = 1
    mocked_data = defaultdict(list)
    for file_name in ("train.csv", "test.csv"):
        csv_file = os.path.join(temp_dataset_dir, file_name)
        mocked_lines = mocked_data[os.path.splitext(file_name)[0]]
        with open(csv_file, "w", encoding="utf-8") as f:
            for i in range(5):
                if base_dir_name == YelpReviewPolarity.__name__:
                    label = seed % 2 + 1
                else:
                    label = seed % 5 + 1
                rand_string = get_random_unicode(seed)
                dataset_line = (label, f"{rand_string}")
                f.write(f'"{label}","{rand_string}"\n')

                # append line to correct dataset split
                mocked_lines.append(dataset_line)
                seed += 1

    if base_dir_name == YelpReviewPolarity.__name__:
        compressed_file = "yelp_review_polarity_csv"
    else:
        compressed_file = "yelp_review_full_csv"

    compressed_dataset_path = os.path.join(base_dir, compressed_file + ".tar.gz")
    # create gz file from dataset folder
    with tarfile.open(compressed_dataset_path, "w:gz") as tar:
        tar.add(temp_dataset_dir, arcname=compressed_file)

    return mocked_data


class TestYelpReviews(TempDirMixin, TorchtextTestCase):
    root_dir = None
    samples = []

    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.root_dir = cls.get_base_temp_dir()
        cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
        cls.patcher.start()

    @classmethod
    def tearDownClass(cls):
        cls.patcher.stop()
        super().tearDownClass()

    @nested_params([YelpReviewPolarity, YelpReviewFull], ["train", "test"])
    def test_yelpreviews(self, yelp_dataset, split):
        expected_samples = _get_mock_dataset(
            os.path.join(self.root_dir, "datasets"), base_dir_name=yelp_dataset.__name__
        )[split]

        dataset = yelp_dataset(root=self.root_dir, split=split)
        samples = list(dataset)
        for sample, expected_sample in zip_equal(samples, expected_samples):
            self.assertEqual(sample, expected_sample)

    @nested_params([YelpReviewPolarity, YelpReviewFull], ["train", "test"])
    def test_yelpreviews_split_argument(self, yelp_dataset, split):
        # call `_get_mock_dataset` to create mock dataset files
        _ = _get_mock_dataset(self.root_dir, yelp_dataset.__name__)

        dataset1 = yelp_dataset(root=self.root_dir, split=split)
        (dataset2,) = yelp_dataset(root=self.root_dir, split=(split,))

        for d1, d2 in zip_equal(dataset1, dataset2):
            self.assertEqual(d1, d2)