File: test_models.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (144 lines) | stat: -rw-r--r-- 6,718 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import copy
from unittest.mock import patch

import torch
import torchtext
from torch.nn import functional as torch_F

from ..common.torchtext_test_case import TorchtextTestCase


class TestModels(TorchtextTestCase):
    def test_roberta_bundler_build_model(self) -> None:
        from torchtext.models import RobertaClassificationHead, RobertaEncoderConf, RobertaModel, RobertaBundle

        dummy_encoder_conf = RobertaEncoderConf(
            vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2
        )

        # case: user provide encoder checkpoint state dict
        dummy_encoder = RobertaModel(dummy_encoder_conf)
        model = RobertaBundle.build_model(encoder_conf=dummy_encoder_conf, checkpoint=dummy_encoder.state_dict())
        self.assertEqual(model.state_dict(), dummy_encoder.state_dict())

        # case: user provide classifier checkpoint state dict when head is given and override_head is False (by default)
        dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        another_dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        dummy_classifier = RobertaModel(dummy_encoder_conf, dummy_classifier_head)
        model = RobertaBundle.build_model(
            encoder_conf=dummy_encoder_conf,
            head=another_dummy_classifier_head,
            checkpoint=dummy_classifier.state_dict(),
        )
        self.assertEqual(model.state_dict(), dummy_classifier.state_dict())

        # case: user provide classifier checkpoint state dict when head is given and override_head is set True
        another_dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        model = RobertaBundle.build_model(
            encoder_conf=dummy_encoder_conf,
            head=another_dummy_classifier_head,
            checkpoint=dummy_classifier.state_dict(),
            override_checkpoint_head=True,
        )
        self.assertEqual(model.head.state_dict(), another_dummy_classifier_head.state_dict())

        # case: user provide only encoder checkpoint state dict when head is given
        dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        dummy_classifier = RobertaModel(dummy_encoder_conf, dummy_classifier_head)
        encoder_state_dict = {}
        for k, v in dummy_classifier.encoder.state_dict().items():
            encoder_state_dict["encoder." + k] = v
        model = torchtext.models.RobertaBundle.build_model(
            encoder_conf=dummy_encoder_conf, head=dummy_classifier_head, checkpoint=encoder_state_dict
        )
        self.assertEqual(model.state_dict(), dummy_classifier.state_dict())

    def test_roberta_bundler_train(self) -> None:
        from torchtext.models import RobertaClassificationHead, RobertaEncoderConf, RobertaModel, RobertaBundle

        dummy_encoder_conf = RobertaEncoderConf(
            vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2
        )
        from torch.optim import SGD

        def _train(model):
            optim = SGD(model.parameters(), lr=1)
            model_input = torch.tensor([[0, 1, 2, 3, 4, 5]])
            target = torch.tensor([0])
            logits = model(model_input)
            loss = torch_F.cross_entropy(logits, target)
            loss.backward()
            optim.step()

        # does not freeze encoder
        dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        dummy_classifier = RobertaModel(dummy_encoder_conf, dummy_classifier_head)
        model = RobertaBundle.build_model(
            encoder_conf=dummy_encoder_conf,
            head=dummy_classifier_head,
            freeze_encoder=False,
            checkpoint=dummy_classifier.state_dict(),
        )

        encoder_current_state_dict = copy.deepcopy(model.encoder.state_dict())
        head_current_state_dict = copy.deepcopy(model.head.state_dict())

        _train(model)

        self.assertNotEqual(model.encoder.state_dict(), encoder_current_state_dict)
        self.assertNotEqual(model.head.state_dict(), head_current_state_dict)

        # freeze encoder
        dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
        dummy_classifier = RobertaModel(dummy_encoder_conf, dummy_classifier_head)
        model = RobertaBundle.build_model(
            encoder_conf=dummy_encoder_conf,
            head=dummy_classifier_head,
            freeze_encoder=True,
            checkpoint=dummy_classifier.state_dict(),
        )

        encoder_current_state_dict = copy.deepcopy(model.encoder.state_dict())
        head_current_state_dict = copy.deepcopy(model.head.state_dict())

        _train(model)

        self.assertEqual(model.encoder.state_dict(), encoder_current_state_dict)
        self.assertNotEqual(model.head.state_dict(), head_current_state_dict)

    @patch("logging.Logger.warning")
    def test_roberta_bundler_get_model(self, mock):
        from torchtext.models import RobertaEncoderConf, RobertaBundle

        dummy_encoder_conf = RobertaEncoderConf(
            vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2
        )
        model_bundle = RobertaBundle(dummy_encoder_conf)
        model_bundle.get_model(load_weights=False, freeze_encoder=True)
        mock.assert_called_with(
            "The encoder is not loaded with pre-trained weights. Setting freeze_encoder to True will hinder encoder from learning appropriate weights."
        )

    def test_roberta_bundler_raise_checkpoint(self) -> None:
        from torchtext.models import RobertaClassificationHead, RobertaEncoderConf, RobertaBundle

        with self.assertRaises(TypeError):
            dummy_encoder_conf = RobertaEncoderConf(
                vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2
            )
            dummy_classifier_head = RobertaClassificationHead(num_classes=2, input_dim=16)
            RobertaBundle.build_model(
                encoder_conf=dummy_encoder_conf,
                head=dummy_classifier_head,
                freeze_encoder=True,
                checkpoint=1,
            )

    def test_roberta_bundler_encode_conf_property(self) -> None:
        from torchtext.models import RobertaEncoderConf, RobertaBundle

        dummy_encoder_conf = RobertaEncoderConf(
            vocab_size=10, embedding_dim=16, ffn_dimension=64, num_attention_heads=2, num_encoder_layers=2
        )
        model_bundle = RobertaBundle(dummy_encoder_conf)
        self.assertTrue(isinstance(model_bundle.encoderConf, RobertaEncoderConf))