File: test_build.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (154 lines) | stat: -rw-r--r-- 6,171 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
"""Tests that requires external resources (Network access to fetch dataset)"""
import os

import torch
import torchtext.data

from .common.torchtext_test_case import TorchtextTestCase


class TestDataUtils(TorchtextTestCase):
    TEST_STR = "A string, particularly one with slightly complex punctuation."

    def test_get_tokenizer_spacy(self) -> None:
        # Test SpaCy option, and verify it properly handles punctuation.
        assert torchtext.data.get_tokenizer("spacy", language="en_core_web_sm")(str(self.TEST_STR)) == [
            "A",
            "string",
            ",",
            "particularly",
            "one",
            "with",
            "slightly",
            "complex",
            "punctuation",
            ".",
        ]

    def test_get_tokenizer_moses(self) -> None:
        # Test Moses option.
        # Note that internally, MosesTokenizer converts to unicode if applicable
        moses_tokenizer = torchtext.data.get_tokenizer("moses")
        assert moses_tokenizer(self.TEST_STR) == [
            "A",
            "string",
            ",",
            "particularly",
            "one",
            "with",
            "slightly",
            "complex",
            "punctuation",
            ".",
        ]

        # Nonbreaking prefixes should tokenize the final period.
        assert moses_tokenizer("abc def.") == ["abc", "def", "."]


class TestVocab(TorchtextTestCase):
    def test_vectors_get_vecs(self) -> None:
        vec = torchtext.vocab.GloVe(name="twitter.27B", dim="25")
        self.assertEqual(vec.vectors.shape[0], len(vec))

        tokens = ["chip", "baby", "Beautiful"]
        token_vecs = vec.get_vecs_by_tokens(tokens)
        self.assertEqual(token_vecs.shape[0], len(tokens))
        self.assertEqual(token_vecs.shape[1], vec.dim)
        self.assertEqual(vec[tokens[0]], token_vecs[0])
        self.assertEqual(vec[tokens[1]], token_vecs[1])
        self.assertEqual(vec["<unk>"], token_vecs[2])

        token_one_vec = vec.get_vecs_by_tokens(tokens[0], lower_case_backup=True)
        self.assertEqual(token_one_vec.shape[0], vec.dim)
        self.assertEqual(vec[tokens[0].lower()], token_one_vec)

    def test_download_charngram_vectors(self) -> None:
        # Build a vocab and get vectors twice to test caching.
        for _ in range(2):
            vectors = torchtext.vocab.CharNGram()
            # The first 5 entries in each vector.
            expected_charngram = {
                "hello": [-0.44782442, -0.08937783, -0.34227219, -0.16233221, -0.39343098],
                "world": [-0.29590717, -0.05275926, -0.37334684, 0.27117205, -0.3868292],
            }

            for word in expected_charngram:
                self.assertEqual(vectors[word][0, :5], expected_charngram[word])

            self.assertEqual(vectors["<unk>"][0], torch.zeros(100))

            # The first 5 entries for `OOV token`
            expected_oov_token_charngram = [-0.1070, -0.2240, -0.3043, -0.1092, 0.0953]
            self.assertEqual(vectors["OOV token"][0, :5], expected_oov_token_charngram, atol=0, rtol=10e-4)

    def test_download_custom_vectors(self) -> None:
        # Build a vocab and get vectors twice to test caching.
        for _ in range(2):
            vectors = torchtext.vocab.Vectors("wiki.simple.vec", url=torchtext.vocab.FastText.url_base.format("simple"))

            # The first 5 entries in each vector.
            expected_fasttext_simple_en = {
                "hello": [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
                "world": [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
            }

            for word in expected_fasttext_simple_en:
                self.assertEqual(vectors[word][:5], expected_fasttext_simple_en[word])

            self.assertEqual(vectors["<unk>"], torch.zeros(300))

    def test_download_fasttext_vectors(self) -> None:
        # Build a vocab and get vectors twice to test caching.
        for _ in range(2):
            vectors = torchtext.vocab.FastText(language="simple")

            # The first 5 entries in each vector.
            expected_fasttext_simple_en = {
                "hello": [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
                "world": [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
            }

            for word in expected_fasttext_simple_en:
                self.assertEqual(vectors[word][:5], expected_fasttext_simple_en[word])

            self.assertEqual(vectors["<unk>"], torch.zeros(300))
            self.assertEqual(vectors["OOV token"], torch.zeros(300))

    def test_download_glove_vectors(self) -> None:
        # Build a vocab and get vectors twice to test caching.
        vectors = torchtext.vocab.GloVe(name="twitter.27B", dim="25")
        # The first 5 entries in each vector.
        expected_twitter = {
            "hello": [-0.77069, 0.12827, 0.33137, 0.0050893, -0.47605],
            "world": [0.10301, 0.095666, -0.14789, -0.22383, -0.14775],
        }

        for word in expected_twitter:
            self.assertEqual(vectors[word][:5], expected_twitter[word])

        self.assertEqual(vectors["<unk>"], torch.zeros(25))
        self.assertEqual(vectors["OOV token"], torch.zeros(25))

    def test_vectors_custom_cache(self) -> None:
        vector_cache = os.path.join("/tmp", "vector_cache")
        # Build a vocab and get vectors twice to test caching.
        for i in range(2):
            if i == 1:
                self.assertTrue(os.path.exists(vector_cache))

            vectors = torchtext.vocab.Vectors(
                "wiki.simple.vec", cache=vector_cache, url=torchtext.vocab.FastText.url_base.format("simple")
            )

            # The first 5 entries in each vector.
            expected_fasttext_simple_en = {
                "hello": [0.39567, 0.21454, -0.035389, -0.24299, -0.095645],
                "world": [0.10444, -0.10858, 0.27212, 0.13299, -0.33165],
            }

            for word in expected_fasttext_simple_en:
                self.assertEqual(vectors[word][:5], expected_fasttext_simple_en[word])

            self.assertEqual(vectors["<unk>"], torch.zeros(300))