1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/* Portions Copyright (c) Meta Platforms, Inc. and affiliates.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original code is taken from
https://github.com/LieluoboAi/radish/blob/master/radish/bert/bert_tokenizer.cc
The code is modified and summary is provided in this PR
https://github.com/pytorch/text/pull/1707
*/
#include <torchtext/csrc/bert_tokenizer.h>
#include <utf8proc.h>
namespace torchtext {
std::string BERTEncoder::kUnkToken = "[UNK]";
int kMaxCharsPerWords = 100;
static std::vector<std::string> _read_vocab(std::string file_path) {
std::ifstream fin(file_path, std::ios::in);
IndexDict token_dict;
std::vector<std::string> tokens;
TORCH_CHECK(fin.is_open(), "Cannot open input file " + file_path);
std::string token;
while (getline(fin, token)) {
// to take into account empty lines
// see issue: https://github.com/pytorch/text/issues/1840
if (token.empty()) {
token = "\n";
}
if (token_dict.find(token) == token_dict.end()) {
token_dict[token] = 1;
}
}
for (auto& token_elem : token_dict) {
tokens.push_back(token_elem.first);
}
return tokens;
}
static bool _is_whitespace(uint32_t c) {
if (c == '\t' || c == '\n' || c == '\r' || c == ' ') {
return true;
}
return (UTF8PROC_CATEGORY_ZS == utf8proc_category(c));
}
static bool _is_control(uint32_t c) {
if (c == '\t' || c == '\n' || c == '\r') {
return false;
}
utf8proc_category_t cat = utf8proc_category(c);
// unicodedata return 'Cn' whereas utf8proc return 'Lo' for following unicode
// point Explicitly checking for this unicode point to avoid above
// discrepency.
if (c == 3332)
return true;
// Fixed: HF referece: All categories starting with 'C'
return (
cat == UTF8PROC_CATEGORY_CC || cat == UTF8PROC_CATEGORY_CF ||
cat == UTF8PROC_CATEGORY_CN || cat == UTF8PROC_CATEGORY_CS ||
cat == UTF8PROC_CATEGORY_CO);
}
static bool _is_chinese_char(uint32_t cp) {
if ((cp >= 0x4E00 && cp <= 0x9FFF) || (cp >= 0x3400 && cp <= 0x4DBF) ||
(cp >= 0x20000 && cp <= 0x2A6DF) || (cp >= 0x2A700 && cp <= 0x2B73F) ||
(cp >= 0x2B740 && cp <= 0x2B81F) || (cp >= 0x2B820 && cp <= 0x2CEAF) ||
(cp >= 0xF900 && cp <= 0xFAFF) || (cp >= 0x2F800 && cp <= 0x2FA1F)) {
return true;
}
return false;
}
static bool _is_punct_char(uint32_t cp) {
if ((cp >= 33 && cp <= 47) || (cp >= 58 && cp <= 64) ||
(cp >= 91 && cp <= 96) || (cp >= 123 && cp <= 126)) {
return true;
}
if (cp == ' ') {
return false;
}
int cate = static_cast<int>(utf8proc_category(cp));
return (cate >= 12 && cate <= 18);
}
static UString _convert_to_unicode(const std::string& text) {
size_t i = 0;
UString ret;
while (i < text.size()) {
uint32_t codepoint;
utf8proc_ssize_t forward = utf8proc_iterate(
(utf8proc_uint8_t*)&text[i],
text.size() - i,
(utf8proc_int32_t*)&codepoint);
if (forward < 0)
return UString();
ret.append(1, codepoint);
i += forward;
}
return ret;
}
static std::string _convert_from_unicode(const UString& text) {
char dst[64];
std::string ret;
for (auto ch : text) {
utf8proc_ssize_t num = utf8proc_encode_char(ch, (utf8proc_uint8_t*)dst);
if (num <= 0)
return "";
ret += std::string(dst, dst + num);
}
return ret;
}
static void to_lower(UString& token) {
for (size_t i = 0; i < token.size(); i++) {
token[i] = utf8proc_tolower(token[i]);
}
}
BERTEncoder::BERTEncoder(
const std::string& vocab_file,
bool do_lower_case,
c10::optional<bool> strip_accents,
std::vector<std::string> never_split)
: vocab_{_read_vocab(vocab_file)},
do_lower_case_{do_lower_case},
strip_accents_{strip_accents},
never_split_{never_split} {
never_split_set_.insert(never_split_.begin(), never_split_.end());
}
BERTEncoder::BERTEncoder(
Vocab vocab,
bool do_lower_case,
c10::optional<bool> strip_accents,
std::vector<std::string> never_split)
: vocab_{vocab},
do_lower_case_{do_lower_case},
strip_accents_{strip_accents},
never_split_{never_split} {
never_split_set_.insert(never_split_.begin(), never_split_.end());
}
UString BERTEncoder::_clean(
const UString& token,
bool strip_accents,
bool is_never_split_token) {
/* This function combines:
* cleaning
* strip accents
*/
size_t len = token.size();
UString ret;
for (size_t i = 0; i < len; i++) {
uint32_t c = token[i];
if (c == 0 || c == 0xFFFD || _is_control(c)) {
continue;
}
if ((!is_never_split_token) &&
(utf8proc_category(c) == UTF8PROC_CATEGORY_MN && strip_accents)) {
continue;
}
if (_is_whitespace(c)) {
ret.append(1, ' ');
} else {
ret.append(1, c);
}
}
return ret;
}
void BERTEncoder::split_(
const std::string& str,
std::vector<std::string>& tokens,
const char& delimiter) {
std::stringstream ss(str);
std::string token;
while (std::getline(ss, token, delimiter)) {
if (!token.empty()) {
tokens.push_back(token);
}
}
}
void BERTEncoder::_max_seg(
const std::string& s,
std::vector<std::string>& results) {
int end = s.size();
int start = 0;
std::vector<std::string> sub_tokens;
while (start < end) {
std::string test(s.c_str() + start, end - start);
if (start > 0) {
test = std::string("##") + test;
}
if (vocab_.__contains__(test)) {
sub_tokens.push_back(test);
start = end;
end = s.size();
} else {
end -= 1;
if (start == end) {
results.push_back(kUnkToken);
return;
}
}
}
for (auto& token : sub_tokens) {
results.push_back(token);
}
}
UString BERTEncoder::_basic_tokenize(
const UString& token,
bool is_never_split_token) {
/*
This function enables white space based tokenization for following:
* chinese character
* punctuation
*/
UString ret;
size_t len = token.size();
for (size_t i = 0; i < len; i++) {
uint32_t c = token[i];
if (_is_chinese_char(c) || (_is_punct_char(c) && !is_never_split_token)) {
if (!ret.empty() && ret.back() != ' ') {
ret.append(1, ' ');
}
ret.append(1, c);
ret.append(1, ' ');
} else if (c == ' ') {
if (!ret.empty() && ret.back() != ' ') {
ret.append(1, c);
}
} else {
ret.append(1, c);
}
}
if (!ret.empty() && ret.back() == ' ') {
ret.erase(ret.end() - 1);
}
return ret;
}
std::vector<std::string> BERTEncoder::Tokenize(std::string text) {
std::vector<std::string> results;
std::vector<std::string> interim_results;
std::vector<std::string> tokens;
// split based on whitespace
split_(text, tokens);
for (auto& token : tokens) {
bool is_never_split_token =
never_split_set_.find(token) != never_split_set_.end();
// normalize
bool strip_accents = do_lower_case_;
if (strip_accents_.has_value()) {
strip_accents = strip_accents_.has_value();
}
if (strip_accents) {
char* nfkcstr = reinterpret_cast<char*>(
utf8proc_NFD(reinterpret_cast<const unsigned char*>(token.c_str())));
if (nfkcstr == nullptr) {
return {};
}
token.assign(nfkcstr, strlen(nfkcstr));
free(nfkcstr);
}
// convert to unicode codepoints
UString unicodes = _convert_to_unicode(token);
// clean -> invalid character removal, whitespce cleanup, strip accents
unicodes = _clean(unicodes, strip_accents, is_never_split_token);
// Add whitespace in front/back of tokens to enable splitting based on
// white-space Enables tokenization on chinese characters, Punctuations
unicodes = _basic_tokenize(unicodes, is_never_split_token);
// Convert token to lower-case
if (do_lower_case_ && !is_never_split_token)
to_lower(unicodes);
// Convert back to string from code-points
split_(_convert_from_unicode(unicodes), interim_results);
}
// Perform WORDPIECE tokenization
for (auto s : interim_results) {
if (s.size() > kMaxCharsPerWords) {
results.push_back(kUnkToken);
} else {
_max_seg(s, results);
}
}
return results;
}
std::vector<int64_t> BERTEncoder::Encode(std::string text) {
std::vector<std::string> tokens = Tokenize(text);
std::vector<int64_t> indices(tokens.size());
for (size_t i = 0; i < tokens.size(); i++) {
indices[i] = vocab_.__getitem__(c10::string_view{tokens[i]});
}
return indices;
}
std::vector<std::vector<std::string>> BERTEncoder::BatchTokenize(
std::vector<std::string> text) {
std::vector<std::vector<std::string>> output;
for (const auto& t : text) {
output.push_back(Tokenize(t));
}
return output;
}
std::vector<std::vector<int64_t>> BERTEncoder::BatchEncode(
std::vector<std::string> text) {
std::vector<std::vector<int64_t>> output;
for (const auto& t : text) {
output.push_back(Encode(t));
}
return output;
}
BERTEncoderStates _serialize_bert_encoder(
const c10::intrusive_ptr<BERTEncoder>& self) {
return std::make_tuple(
self->do_lower_case_,
self->strip_accents_,
self->never_split_,
self->vocab_.itos_);
}
c10::intrusive_ptr<BERTEncoder> _deserialize_bert_encoder(
BERTEncoderStates states) {
auto do_lower_case = std::get<0>(states);
auto strip_accents = std::get<1>(states);
auto never_split = std::get<2>(states);
auto strings = std::get<3>(states);
return c10::make_intrusive<BERTEncoder>(
Vocab(std::move(strings)), do_lower_case, strip_accents, never_split);
}
} // namespace torchtext
|