1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#include <torchtext/csrc/gpt2_bpe_tokenizer.h>
#include <torchtext/csrc/regex.h> // @manual
#include <algorithm>
#include <sstream>
#include <unordered_set>
#include <utility>
namespace torchtext {
const Regex kGPT2Regex(
"(\\'s|\\'t|\\'re|\\'ve|\\'m|\\'ll|\\'d| ?\\pL+|"
" ?\\pN+| ?[^\\s\\v\\pL\\pN]+|[\\s\\v]+)");
bool is_whitespace(const std::string& input) {
for (const char& c : input) {
if (!isspace(c)) {
return false;
}
}
return true;
}
template <class Key_, class Value_>
c10::Dict<Key_, Value_> _map_to_c10_dict(std::unordered_map<Key_, Value_> m) {
c10::Dict<Key_, Value_> d;
for (const auto& item : m)
d.insert(item.first, item.second);
return d;
}
template <class Key_, class Value_>
std::unordered_map<Key_, Value_> _c10_dict_to_map(c10::Dict<Key_, Value_> d) {
std::unordered_map<Key_, Value_> m;
for (const auto& item : d)
m[item.key()] = item.value();
return m;
}
std::vector<std::string> gpt2_bpe_pre_tokenizer(std::string input) {
// Python implementation:
// https://github.com/pytorch/fairseq/blob/main/fairseq/data/encoders/gpt2_bpe_utils.py#L69
// Original regex contains a negative lookahead pattern, which is not
// supported in re2. This implementation modifies the original regex in
// the following two ways:
// 1. Removes negative lookahead and adds a post-processing step instead.
// 2. Replace all [\s] occurences with [\s\v] because re2 does not include
// vertical tab (\v) in whitespace. PCRE and Python re include \v in \s.
//
// Pseudocode of post-processing step:
// - Loop over all tokens
// - IF token is all whitespace:
// - set prepend_space to False
// - IF token is last token, add it to return vector
// - ELSE
// - If token length is >1, add token[0:len(token) - 1] to return list
// - IF token[-1] is space (ascii 32), then carry it over for next token,
// set append_space = True
// - ELSE make token[-1] its own token and add to return list
// - ELSE IF prepend_space == True, prepend a space to the token and add to
// return list
// - ELSE, add token to return list
std::string token;
std::vector<std::string> tokens;
re2::StringPiece inp(input);
bool prepend_space = false;
while (kGPT2Regex.FindAndConsume(&inp, &token)) {
if (is_whitespace(token)) {
prepend_space = false;
if (inp.empty()) { // token is last token
tokens.push_back(token);
} else {
if (token.length() > 1) {
tokens.push_back(token.substr(0, token.length() - 1));
}
if (token[token.length() - 1] == ' ') { // last char is space
prepend_space = true;
} else { // push last whitespace char as a token if it is not a space
tokens.push_back(token.substr(token.length() - 1));
}
}
} else if (prepend_space) {
tokens.push_back(" " + token);
prepend_space = false;
} else {
tokens.push_back(token);
}
}
return tokens;
}
std::pair<std::string, std::string> split_tokens(
std::string s,
std::string delimiter) {
auto pos = s.find(delimiter);
TORCH_CHECK(pos != std::string::npos, "Expected `s`to contain `delimiter`");
return std::make_pair(s.substr(0, pos), s.substr(pos + delimiter.length()));
}
int list_str_index(
std::vector<std::string> list,
std::string element,
int start) {
// Equivalent to: list.index(element, start)
for (std::size_t i = start; i < list.size(); ++i) {
if (list[i] == element) {
return i;
}
}
return -1;
}
std::string concatenate_strings(const std::vector<std::string>& list) {
std::string ret = "";
for (auto s : list)
ret += s;
return ret;
}
std::vector<std::string> get_pairs(
std::vector<std::string> token_list,
const std::string& seperator) {
// For example: ["he", "l", "l", "o"]
// ==> ["he\u0001l", "l\u0001l", "l\u0001o"]
std::unordered_set<std::string> pairs;
std::vector<std::string> pairs_vec;
if (token_list.empty())
return pairs_vec;
std::string prev_token = token_list[0];
for (std::size_t i = 1; i < token_list.size(); ++i) {
pairs.insert(prev_token + seperator + token_list[i]);
prev_token = token_list[i];
}
pairs_vec.insert(pairs_vec.end(), pairs.begin(), pairs.end());
return pairs_vec;
}
GPT2BPEEncoder::GPT2BPEEncoder(
const c10::Dict<std::string, int64_t>& bpe_encoder,
const c10::Dict<std::string, int64_t>& bpe_merge_ranks,
const std::string& seperator,
const c10::Dict<int64_t, std::string>& byte_encoder,
bool caching_enabled)
: inf_(bpe_merge_ranks.size() + 1),
bpe_encoder_(std::move(bpe_encoder)),
bpe_merge_ranks_(std::move(bpe_merge_ranks)),
byte_encoder_(std::move(byte_encoder)),
seperator_(std::move(seperator)),
caching_enabled_(caching_enabled) {}
GPT2BPEEncoder::GPT2BPEEncoder(
const std::unordered_map<std::string, int64_t>& bpe_encoder,
const std::unordered_map<std::string, int64_t>& bpe_merge_ranks,
const std::string& seperator,
const std::unordered_map<int64_t, std::string>& byte_encoder,
bool caching_enabled)
: GPT2BPEEncoder(
_map_to_c10_dict<std::string, int64_t>(bpe_encoder),
_map_to_c10_dict<std::string, int64_t>(bpe_merge_ranks),
seperator,
_map_to_c10_dict<int64_t, std::string>(byte_encoder),
caching_enabled) {}
std::vector<std::string> GPT2BPEEncoder::ByteEncode_(std::string token) {
// Equivalent to: (self.byte_encoder[b] for b in token.encode('utf-8')
std::vector<std::string> encoded;
for (auto& ch : token) {
encoded.push_back(byte_encoder_.at((unsigned char)ch));
}
return encoded;
}
int64_t GPT2BPEEncoder::GetBPEMergeRank_(std::string pair) {
if (bpe_merge_ranks_.contains(pair)) {
return bpe_merge_ranks_.at(pair);
}
return inf_;
}
std::string GPT2BPEEncoder::FindBestPair_(std::vector<std::string> pairs) {
// Equivalent to:
// min(pairs, key = lambda pair: self.bpe_merge_ranks.get(pair,
// float('inf')))
auto best_pair_idx = 0;
auto best_rank = GetBPEMergeRank_(pairs[best_pair_idx]);
for (std::size_t i = 1; i < pairs.size(); ++i) {
auto rank = GetBPEMergeRank_(pairs[i]);
if (rank < best_rank) {
best_pair_idx = i;
best_rank = rank;
}
}
return pairs[best_pair_idx];
}
std::vector<std::string> GPT2BPEEncoder::BPE_(
const std::vector<std::string>& token_list) {
// Given a list of input tokens, keep finding the best bpe merge and
// generate a new list of tokens until
// 1) token list size reduced to 1
// OR
// 2) can't find bpe merge
auto concatenated = concatenate_strings(token_list);
if (caching_enabled_ && cache_.contains(concatenated)) {
return cache_.at(concatenated);
}
std::vector<std::string> tok_list = token_list;
auto pairs = get_pairs(tok_list, seperator_);
if (pairs.empty()) {
return {concatenated};
}
while (true) {
auto bigram = FindBestPair_(pairs);
if (!bpe_merge_ranks_.contains(bigram))
break;
// Finding all indexes that token_list[i] == first and token_list[i+1] ==
// second. After the loop, new token list will be
// 1) first + second pair
// 2) all the other tokens in the original token list
//
// For example: first="a" second="w" and token_list =
// ["a", "w", "some", "a", "w", "e"]
// Result: new_token_list = ["aw", "some", "aw", "e"]
auto parts = split_tokens(bigram, seperator_);
std::vector<std::string> new_token_list;
std::size_t i = 0;
while (i < tok_list.size()) {
auto j = list_str_index(tok_list, parts.first, i);
if (j != -1) {
for (int k = i; k < j; k++)
new_token_list.push_back(tok_list[k]);
i = j;
} else {
for (std::size_t k = i; k < tok_list.size(); k++)
new_token_list.push_back(tok_list[k]);
break;
}
if (tok_list[i] == parts.first && i < (tok_list.size() - 1) &&
tok_list[i + 1] == parts.second) {
new_token_list.push_back(parts.first + parts.second);
i += 2;
} else {
new_token_list.push_back(tok_list[i]);
i += 1;
}
}
tok_list = new_token_list;
if (tok_list.size() == 1) {
break;
} else {
pairs = get_pairs(tok_list, seperator_);
}
}
if (caching_enabled_)
cache_.insert(concatenated, tok_list);
return tok_list;
}
std::vector<std::string> GPT2BPEEncoder::PreTokenize_(std::string input) {
return gpt2_bpe_pre_tokenizer(input);
}
std::vector<int64_t> GPT2BPEEncoder::Encode(const std::string& text) {
std::vector<int64_t> bpe_token_ids;
for (const auto& token : PreTokenize_(text)) {
auto byte_encoded_token = ByteEncode_(token);
for (const auto& bpe_token : BPE_(byte_encoded_token)) {
bpe_token_ids.push_back(bpe_encoder_.at(bpe_token));
}
}
return bpe_token_ids;
}
std::vector<std::string> GPT2BPEEncoder::Tokenize(const std::string& text) {
std::vector<std::string> bpe_tokens;
for (const auto& token : PreTokenize_(text)) {
auto byte_encoded_token = ByteEncode_(token);
for (const auto& bpe_token : BPE_(byte_encoded_token)) {
bpe_tokens.push_back(bpe_token);
}
}
return bpe_tokens;
}
std::unordered_map<std::string, int64_t> GPT2BPEEncoder::GetBPEEncoder() const {
return _c10_dict_to_map(bpe_encoder_);
}
std::unordered_map<std::string, int64_t> GPT2BPEEncoder::GetBPEMergeRanks()
const {
return _c10_dict_to_map(bpe_merge_ranks_);
}
std::unordered_map<int64_t, std::string> GPT2BPEEncoder::GetByteEncoder()
const {
return _c10_dict_to_map(byte_encoder_);
}
GPT2BPEEncoderStatesPybind _serialize_gpt2_bpe_encoder_pybind(
const c10::intrusive_ptr<GPT2BPEEncoder>& self) {
return std::make_tuple(
self->GetBPEEncoder(),
self->GetBPEMergeRanks(),
self->seperator_,
self->GetByteEncoder(),
self->caching_enabled_);
}
GPT2BPEEncoderStatesTorchbind _serialize_gpt2_bpe_encoder_torchbind(
const c10::intrusive_ptr<GPT2BPEEncoder>& self) {
return std::make_tuple(
self->bpe_encoder_,
self->bpe_merge_ranks_,
self->seperator_,
self->byte_encoder_,
self->caching_enabled_);
}
c10::intrusive_ptr<GPT2BPEEncoder> _deserialize_gpt2_bpe_encoder_pybind(
GPT2BPEEncoderStatesPybind states) {
auto state_size = std::tuple_size<decltype(states)>::value;
TORCH_CHECK(
state_size == 5,
"Expected deserialized GPT2BPEEncoder to have 5 states but found " +
std::to_string(state_size) + " states");
return c10::make_intrusive<GPT2BPEEncoder>(
std::move(std::get<0>(states)),
std::move(std::get<1>(states)),
std::get<2>(states),
std::move(std::get<3>(states)),
std::get<4>(states));
}
c10::intrusive_ptr<GPT2BPEEncoder> _deserialize_gpt2_bpe_encoder_torchbind(
GPT2BPEEncoderStatesTorchbind states) {
auto state_size = std::tuple_size<decltype(states)>::value;
TORCH_CHECK(
state_size == 5,
"Expected deserialized GPT2BPEEncoder to have 5 states but found " +
std::to_string(state_size) + " states");
return c10::make_intrusive<GPT2BPEEncoder>(
std::move(std::get<0>(states)),
std::move(std::get<1>(states)),
std::get<2>(states),
std::move(std::get<3>(states)),
std::get<4>(states));
}
} // namespace torchtext
|