1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
#include <ATen/Parallel.h> // @manual
#include <double-conversion/double-conversion.h>
#include <double-conversion/ieee.h>
#include <double-conversion/utils.h>
#include <torchtext/csrc/common.h>
#include <torchtext/csrc/vectors.h> // @manual
#include <atomic>
#include <condition_variable>
#include <future>
#include <iostream>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <string>
namespace torchtext {
Vectors::Vectors(
const IndexMap& stoi,
torch::Tensor vectors,
torch::Tensor unk_tensor)
: stoi_(stoi),
vectors_(std::move(vectors)),
unk_tensor_(std::move(unk_tensor)) {}
Vectors::Vectors(
const std::vector<std::string>& tokens,
const std::vector<std::int64_t>& indices,
torch::Tensor vectors,
torch::Tensor unk_tensor)
: vectors_(std::move(vectors)), unk_tensor_(std::move(unk_tensor)) {
// guarding against size mismatch of tokens and indices
if (tokens.size() != indices.size()) {
#ifdef _MSC_VER
std::cerr << "[RuntimeError] Mismatching sizes for tokens and indices. "
"Size of tokens: "
<< tokens.size() << ", size of indices: " << indices.size()
<< std::endl;
#endif
throw std::runtime_error(
"Mismatching sizes for tokens and indices. Size of tokens: " +
std::to_string(tokens.size()) +
", size of indices: " + std::to_string(indices.size()) + ".");
}
stoi_.reserve(tokens.size());
stovec_.reserve(tokens.size());
for (std::size_t i = 0; i < tokens.size(); i++) {
// tokens should not have any duplicates
const auto& item_index = stoi_.find(tokens[i]);
if (item_index != stoi_.end()) {
#ifdef _MSC_VER
std::cerr << "[RuntimeError] Duplicate token found in tokens list: "
<< tokens[i] << std::endl;
#endif
throw std::runtime_error(
"Duplicate token found in tokens list: " + tokens[i]);
}
stoi_[tokens[i]] = indices[i];
}
}
torch::Tensor Vectors::__getitem__(const std::string& token) {
const auto& item = stovec_.find(token);
if (item != stovec_.end()) {
return item->second;
}
const auto& item_index = stoi_.find(token);
if (item_index != stoi_.end()) {
auto vector = vectors_[item_index->second];
stovec_[token] = vector;
return vector;
}
return unk_tensor_;
}
torch::Tensor Vectors::lookup_vectors(const std::vector<std::string>& tokens) {
std::vector<torch::Tensor> vectors;
for (const std::string& token : tokens) {
vectors.emplace_back(__getitem__(token));
}
return torch::stack(vectors, 0);
}
void Vectors::__setitem__(
const std::string& token,
const torch::Tensor& vector) {
const auto& item_index = stoi_.find(token);
if (item_index != stoi_.end()) {
stovec_[token] = vector;
vectors_[item_index->second] = vector;
} else {
stoi_[token] = vectors_.size(0);
stovec_[token] = vector;
// TODO: This could be done lazily during serialization (if necessary).
// We would cycle through the vectors and concatenate those that aren't
// views.
vectors_ = at::cat({vectors_, vector.unsqueeze(0)});
}
}
int64_t Vectors::__len__() {
return stovec_.size();
}
std::unordered_map<std::string, int64_t> Vectors::get_stoi() {
std::unordered_map<std::string, int64_t> stoi;
stoi.reserve(stoi_.size());
// construct tokens and index list
for (const auto& item : stoi_) {
stoi[item.first] = item.second;
}
return stoi;
}
std::tuple<int64_t, int64_t, int64_t> _infer_shape(
const std::string& file_path,
const char delimiter) {
int64_t num_header_lines = 0, num_lines = 0, vector_dim = -1;
std::vector<std::string> vec_str;
std::string line, word;
std::ifstream fin;
fin.open(file_path, std::ios::in);
while (std::getline(fin, line)) {
vec_str.clear();
if (vector_dim == -1) {
std::istringstream s(line);
// get rid of the token
std::getline(s, word, delimiter);
// we assume entries for vector are always seperated by ' '
while (std::getline(s, word, ' ')) {
vec_str.push_back(word);
}
// assuming word, [vector] format
// the header present in some(w2v) formats contains two elements
if (vec_str.size() <= 2) {
num_header_lines++;
} else if (vec_str.size() > 2) {
vector_dim = vec_str.size();
num_lines++; // first element read
}
} else {
num_lines++;
}
}
return std::make_tuple(num_lines, num_header_lines, vector_dim);
}
void parse_vectors_chunk(
const std::string& file_path,
size_t offset,
const int64_t start_line,
const int64_t end_line,
const int64_t vector_dim,
const char delimiter,
std::shared_ptr<StringList> tokens,
float* data_ptr) {
std::ifstream fin;
fin.open(file_path, std::ios::in);
fin.seekg(offset);
int converter_flags = double_conversion::StringToDoubleConverter::NO_FLAGS;
double_conversion::StringToDoubleConverter converter(
converter_flags, 0.0f, double_conversion::Single::NaN(), NULL, NULL);
for (int64_t i = start_line; i < end_line; i++) {
std::string token;
// read the token
std::getline(fin, token, delimiter);
tokens->push_back(token);
std::string vec_val;
int processed_characters_count;
// read the vector
for (int64_t j = 0; j < vector_dim; j++) {
fin >> vec_val;
const char* tmp_str = vec_val.c_str();
data_ptr[i * vector_dim + j] = converter.StringToFloat(
tmp_str, strlen(tmp_str), &processed_characters_count);
TORCH_CHECK(
processed_characters_count == strlen(tmp_str),
"Processed characters count didn't match vector string "
"length during string to float conversion!");
}
fin >> std::ws;
}
}
std::tuple<IndexMap, StringList> _concat_vectors(
std::vector<std::shared_ptr<StringList>> chunk_tokens,
const int64_t num_header_lines,
const int64_t num_lines) {
TORCH_CHECK(
chunk_tokens.size() > 0,
"There must be at least 1 chunk to concatenate!");
IndexMap tokens;
StringList dup_tokens;
tokens.reserve(num_lines);
// concat all loaded tuples
int64_t count = num_header_lines;
for (size_t i = 0; i < chunk_tokens.size(); i++) {
auto& subset_tokens = *chunk_tokens[i];
for (size_t j = 0; j < subset_tokens.size(); j++) {
const auto& token_index = tokens.find(subset_tokens[j]);
if (token_index != tokens.end()) {
dup_tokens.emplace_back(std::move(subset_tokens[j]));
} else {
tokens[std::move(subset_tokens[j])] = count;
}
count++;
}
}
return std::make_tuple(std::move(tokens), std::move(dup_tokens));
}
constexpr int64_t GRAIN_SIZE = 131072;
std::tuple<Vectors, std::vector<std::string>> _load_token_and_vectors_from_file(
const std::string& file_path,
const std::string& delimiter_str,
int64_t num_cpus,
c10::optional<torch::Tensor> opt_unk_tensor) {
TORCH_CHECK(
delimiter_str.size() == 1,
"Only string delimeters of size 1 are supported.");
std::cerr << "[INFO] Reading file " << file_path << std::endl;
const char delimiter = delimiter_str.at(0);
int64_t num_lines, num_header_lines, vector_dim;
std::tie(num_lines, num_header_lines, vector_dim) =
_infer_shape(file_path, delimiter);
int64_t chunk_size = impl::divup(num_lines, num_cpus);
// Launching a thread on less lines than this likely has too much overhead.
// TODO: Add explicit test beyond grain size to cover multithreading
chunk_size = std::max(chunk_size, GRAIN_SIZE);
std::vector<size_t> offsets;
impl::infer_offsets(
file_path, num_lines, chunk_size, offsets, num_header_lines);
torch::Tensor data_tensor = torch::empty({num_lines, vector_dim});
float* data_ptr = data_tensor.data_ptr<float>();
std::vector<std::shared_ptr<StringList>> chunk_tokens;
std::mutex m;
std::condition_variable cv;
std::atomic<int> counter(0);
// create threads
int64_t j = 0;
for (int64_t i = num_header_lines; i < num_lines; i += chunk_size) {
auto tokens_ptr = std::make_shared<StringList>();
counter++;
at::launch([&,
file_path,
num_lines,
chunk_size,
vector_dim,
delimiter,
j,
i,
tokens_ptr,
data_ptr]() {
parse_vectors_chunk(
file_path,
offsets[j],
i,
std::min(num_lines, i + chunk_size),
vector_dim,
delimiter,
tokens_ptr,
data_ptr);
std::lock_guard<std::mutex> lk(m);
counter--;
cv.notify_all();
});
chunk_tokens.push_back(tokens_ptr);
j++;
}
// block until all threads finish execution
std::unique_lock<std::mutex> lock(m);
cv.wait(lock, [&counter] { return counter == 0; });
IndexMap stoi;
StringList dup_tokens;
std::tie(stoi, dup_tokens) =
_concat_vectors(chunk_tokens, num_header_lines, num_lines);
torch::Tensor unk_tensor;
if (opt_unk_tensor) {
unk_tensor = std::move(*opt_unk_tensor);
} else {
unk_tensor = torch::zeros({vector_dim}, torch::kFloat32);
}
auto result =
std::make_tuple(Vectors(stoi, data_tensor, unk_tensor), dup_tokens);
return result;
}
VectorsStates _serialize_vectors(const c10::intrusive_ptr<Vectors>& self) {
std::vector<std::string> tokens;
std::vector<int64_t> indices;
tokens.reserve(self->stoi_.size());
indices.reserve(self->stoi_.size());
// construct tokens and index list
// we need to store indices because the `vectors_` tensor may have gaps
for (const auto& item : self->stoi_) {
tokens.push_back(item.first);
indices.push_back(item.second);
}
std::vector<int64_t> integers = std::move(indices);
std::vector<std::string> strings = std::move(tokens);
std::vector<torch::Tensor> tensors{self->vectors_, self->unk_tensor_};
VectorsStates states = std::make_tuple(
self->version_str_,
std::move(integers),
std::move(strings),
std::move(tensors));
return states;
}
c10::intrusive_ptr<Vectors> _deserialize_vectors(VectorsStates states) {
auto state_size = std::tuple_size<decltype(states)>::value;
if (state_size != 4) {
throw std::runtime_error(
"Expected deserialized Vectors to have 4 states but found only " +
std::to_string(state_size) + " states.");
}
auto& version_str = std::get<0>(states);
auto& integers = std::get<1>(states);
auto& strings = std::get<2>(states);
auto& tensors = std::get<3>(states);
if (version_str.compare("0.0.1") >= 0) {
// check integers and tokens are same size
if (integers.size() != strings.size()) {
throw std::runtime_error(
"Expected `integers` and `strings` states to be the same size.");
}
IndexMap stoi;
stoi.reserve(integers.size());
for (size_t i = 0; i < integers.size(); i++) {
stoi[strings[i]] = integers[i];
}
return c10::make_intrusive<Vectors>(
std::move(stoi), std::move(tensors[0]), std::move(tensors[1]));
}
throw std::runtime_error(
"Found unexpected version for serialized Vector: " + version_str + ".");
}
} // namespace torchtext
|