1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
import codecs
import functools
import inspect
import os
from torch.utils.data import functional_datapipe, IterDataPipe
from torch.utils.data.datapipes.utils.common import StreamWrapper
try:
import defusedxml.ElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
from torchtext import _CACHE_DIR
"""
These functions and classes are meant solely for use in torchtext.datasets and not
for public consumption yet.
"""
def _clean_inner_xml_file(outfile, stream):
"""Accepts an output filename and a stream of the byte contents of an XML file
and writes the cleaned contents to a new file on disk.
Args:
outfile: the path to which the modified stream should be written
stream: the byte datapipe of the contents of the XML file
Returns: the path to the newly-written file and the new StreamWrapper for appropriate caching
"""
os.makedirs(os.path.dirname(outfile), exist_ok=True)
with codecs.open(outfile, mode="w", encoding="utf-8") as fd_txt:
root = ET.fromstring(stream.read().decode("utf-8"))[0]
for doc in root.findall("doc"):
for e in doc.findall("seg"):
fd_txt.write(e.text.strip() + "\n")
return outfile, StreamWrapper(open(outfile, "rb"))
def _clean_inner_tags_file(outfile, stream):
"""Accepts an output filename and a stream of the byte contents of a tags file
and writes the cleaned contents to a new file on disk.
Args:
outfile: the path to which the modified stream should be written
stream: the byte datapipe of the contents of the tags file
Returns: the path to the newly-written file and the new StreamWrapper for appropriate caching
"""
xml_tags = [
"<url",
"<keywords",
"<talkid",
"<description",
"<reviewer",
"<translator",
"<title",
"<speaker",
"<doc",
"</doc",
]
os.makedirs(os.path.dirname(outfile), exist_ok=True)
with codecs.open(outfile, mode="w", encoding="utf-8") as fd_txt:
for line in stream.readlines():
if not any(tag in line.decode("utf-8") for tag in xml_tags):
# TODO: Fix utf-8 next line mark
# fd_txt.write(l.strip() + '\n')
# fd_txt.write(l.strip() + u"\u0085")
# fd_txt.write(l.lstrip())
fd_txt.write(line.decode("utf-8").strip() + "\n")
return outfile, StreamWrapper(open(outfile, "rb"))
def _rewrite_text_file(outfile, stream):
"""Accepts an output filename and a stream of the byte contents of a text file
and writes the cleaned contents to a new file on disk.
Args:
outfile: the path to which the modified stream should be written
stream: the byte datapipe of the contents of the text file
Returns: the path to the newly-written file and the new StreamWrapper for appropriate caching
"""
os.makedirs(os.path.dirname(outfile), exist_ok=True)
with open(outfile, "w", encoding="utf-8") as f:
for line in stream.readlines():
f.write(line.decode("utf-8") + "\n")
return outfile, StreamWrapper(open(outfile, "rb"))
def _clean_files(outfile, fname, stream):
if "xml" in fname:
return _clean_inner_xml_file(outfile, stream)
elif "tags" in fname:
return _clean_inner_tags_file(outfile, stream)
return _rewrite_text_file(outfile, stream)
def _check_default_set(split, target_select, dataset_name):
# Check whether given object split is either a tuple of strings or string
# and represents a valid selection of options given by the tuple of strings
# target_select.
if isinstance(split, str):
split = (split,)
if isinstance(target_select, str):
target_select = (target_select,)
if not isinstance(split, tuple):
raise ValueError("Internal error: Expected split to be of type tuple.")
if not set(split).issubset(set(target_select)):
raise TypeError(
"Given selection {} of splits is not supported for dataset {}. Please choose from {}.".format(
split, dataset_name, target_select
)
)
return split
def _wrap_datasets(datasets, split):
# Wrap return value for _setup_datasets functions to support singular values instead
# of tuples when split is a string.
if isinstance(split, str):
if len(datasets) != 1:
raise ValueError("Internal error: Expected number of datasets is not 1.")
return datasets[0]
return datasets
def _wrap_split_argument_with_fn(fn, splits):
"""
Wraps given function of specific signature to extend behavior of split
to support individual strings. The given function is expected to have a split
kwarg that accepts tuples of strings, e.g. ('train', 'valid') and the returned
function will have a split argument that also accepts strings, e.g. 'train', which
are then turned single entry tuples. Furthermore, the return value of the wrapped
function is unpacked if split is only a single string to enable behavior such as
train = AG_NEWS(split='train')
train, valid = AG_NEWS(split=('train', 'valid'))
"""
argspec = inspect.getfullargspec(fn)
if not (
argspec.args[0] == "root"
and argspec.args[1] == "split"
and argspec.varargs is None
and argspec.varkw is None
and len(argspec.kwonlyargs) == 0
):
raise ValueError("Internal Error: Given function {} did not adhere to standard signature.".format(fn))
@functools.wraps(fn)
def new_fn(root=_CACHE_DIR, split=splits, **kwargs):
result = []
for item in _check_default_set(split, splits, fn.__name__):
result.append(fn(root, item, **kwargs))
return _wrap_datasets(tuple(result), split)
new_sig = inspect.signature(new_fn)
new_sig_params = new_sig.parameters
new_params = []
new_params.append(new_sig_params["root"].replace(default=".data"))
new_params.append(new_sig_params["split"].replace(default=splits))
new_params += [entry[1] for entry in list(new_sig_params.items())[2:]]
new_sig = new_sig.replace(parameters=tuple(new_params))
new_fn.__signature__ = new_sig
return new_fn
def _wrap_split_argument(splits):
def new_fn(fn):
return _wrap_split_argument_with_fn(fn, splits)
return new_fn
def _create_dataset_directory(dataset_name):
def decorator(fn):
argspec = inspect.getfullargspec(fn)
if not (
argspec.args[0] == "root"
and argspec.varargs is None
and argspec.varkw is None
and len(argspec.kwonlyargs) == 0
):
raise ValueError("Internal Error: Given function {} did not adhere to standard signature.".format(fn))
@functools.wraps(fn)
def wrapper(root=_CACHE_DIR, *args, **kwargs):
new_root = os.path.join(root, "datasets", dataset_name)
if not os.path.exists(new_root):
os.makedirs(new_root, exist_ok=True)
return fn(root=new_root, *args, **kwargs)
return wrapper
return decorator
def _generate_iwslt_files_for_lang_and_split(year, src_language, tgt_language, valid_set, test_set):
train_filenames = (
"train.{}-{}.{}".format(src_language, tgt_language, src_language),
"train.{}-{}.{}".format(src_language, tgt_language, tgt_language),
)
valid_filenames = (
"IWSLT{}.TED.{}.{}-{}.{}".format(year, valid_set, src_language, tgt_language, src_language),
"IWSLT{}.TED.{}.{}-{}.{}".format(year, valid_set, src_language, tgt_language, tgt_language),
)
test_filenames = (
"IWSLT{}.TED.{}.{}-{}.{}".format(year, test_set, src_language, tgt_language, src_language),
"IWSLT{}.TED.{}.{}-{}.{}".format(year, test_set, src_language, tgt_language, tgt_language),
)
src_train, tgt_train = train_filenames
src_eval, tgt_eval = valid_filenames
src_test, tgt_test = test_filenames
uncleaned_train_filenames = (
"train.tags.{}-{}.{}".format(src_language, tgt_language, src_language),
"train.tags.{}-{}.{}".format(src_language, tgt_language, tgt_language),
)
uncleaned_valid_filenames = (
"IWSLT{}.TED.{}.{}-{}.{}.xml".format(year, valid_set, src_language, tgt_language, src_language),
"IWSLT{}.TED.{}.{}-{}.{}.xml".format(year, valid_set, src_language, tgt_language, tgt_language),
)
uncleaned_test_filenames = (
"IWSLT{}.TED.{}.{}-{}.{}.xml".format(year, test_set, src_language, tgt_language, src_language),
"IWSLT{}.TED.{}.{}-{}.{}.xml".format(year, test_set, src_language, tgt_language, tgt_language),
)
uncleaned_src_train, uncleaned_tgt_train = uncleaned_train_filenames
uncleaned_src_eval, uncleaned_tgt_eval = uncleaned_valid_filenames
uncleaned_src_test, uncleaned_tgt_test = uncleaned_test_filenames
file_path_by_lang_and_split = {
src_language: {
"train": src_train,
"valid": src_eval,
"test": src_test,
},
tgt_language: {
"train": tgt_train,
"valid": tgt_eval,
"test": tgt_test,
},
}
uncleaned_filenames_by_lang_and_split = {
src_language: {
"train": uncleaned_src_train,
"valid": uncleaned_src_eval,
"test": uncleaned_src_test,
},
tgt_language: {
"train": uncleaned_tgt_train,
"valid": uncleaned_tgt_eval,
"test": uncleaned_tgt_test,
},
}
return file_path_by_lang_and_split, uncleaned_filenames_by_lang_and_split
@functional_datapipe("read_squad")
class _ParseSQuADQAData(IterDataPipe):
r"""Iterable DataPipe to parse the contents of a stream of JSON objects
as provided by SQuAD QA. Used in SQuAD1 and SQuAD2.
"""
def __init__(self, source_datapipe) -> None:
self.source_datapipe = source_datapipe
def __iter__(self):
for _, stream in self.source_datapipe:
raw_json_data = stream["data"]
for layer1 in raw_json_data:
for layer2 in layer1["paragraphs"]:
for layer3 in layer2["qas"]:
_context, _question = layer2["context"], layer3["question"]
_answers = [item["text"] for item in layer3["answers"]]
_answer_start = [item["answer_start"] for item in layer3["answers"]]
if len(_answers) == 0:
_answers = [""]
_answer_start = [-1]
yield _context, _question, _answers, _answer_start
@functional_datapipe("read_iob")
class _ParseIOBData(IterDataPipe):
"""A datapipe responsible for reading sep-delimited IOB data from a stream.
Used for CONLL 2000 and UDPOS."""
def __init__(self, dp, sep: str = "\t") -> None:
self.dp = dp
self.sep = sep
def __iter__(self):
columns = []
for filename, line in self.dp:
line = line.strip()
if line == "":
if columns:
yield columns
columns = []
else:
for i, column in enumerate(line.split(self.sep)):
if len(columns) < i + 1:
columns.append([])
columns[i].append(column)
if len(columns) > 0:
yield columns
@functional_datapipe("parse_cnndm_data")
class _ParseCNNDMData(IterDataPipe):
"""Iterable DataPipe to parse the article and abstract from a CNNDM data stream.
Code is inspired from https://github.com/abisee/cnn-dailymail/blob/master/make_datafiles.py"""
dm_single_close_quote = "\u2019" # unicode
dm_double_close_quote = "\u201d"
# acceptable ways to end a sentence
END_TOKENS = [".", "!", "?", "...", "'", "`", '"', dm_single_close_quote, dm_double_close_quote, ")", "\n"]
def __init__(self, source_datapipe) -> None:
self.source_datapipe = source_datapipe
def _fix_missing_period(self, line):
"""Adds a period to a line that is missing a period"""
if "@highlight" in line:
return line
if line == "":
return line
if line[-1] in self.END_TOKENS:
return line
return line + " ."
def __iter__(self):
for _, stream in self.source_datapipe:
lines = stream.readlines()
lines = [line.decode("utf-8").strip() for line in lines]
# put periods on the ends of lines that are missing them
# this is a problem in the dataset because many image captions don't end in periods
# consequently they end up in the body of the article as run-on sentences
lines = [self._fix_missing_period(line) for line in lines]
# Separate out article and abstract sentences
article_lines = []
highlights = []
next_is_highlight = False
for idx, line in enumerate(lines):
if line == "":
continue # empty line
elif line.startswith("@highlight"):
next_is_highlight = True
elif next_is_highlight:
highlights.append(line)
else:
article_lines.append(line)
article = " ".join(article_lines)
abstract = " ".join(highlights)
yield article, abstract
|