1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
import io
import re
import torch
__all__ = [
"generate_sp_model",
"load_sp_model",
"sentencepiece_numericalizer",
"sentencepiece_tokenizer",
"numericalize_tokens_from_iterator",
"filter_wikipedia_xml",
"to_map_style_dataset",
]
"""
This file contains experimental functionality.
All of these are experimental, unstable, and subject to change or deletion.
"""
def generate_sp_model(filename, vocab_size=20000, model_type="unigram", model_prefix="m_user"):
r"""Train a SentencePiece tokenizer.
Args:
filename: the data file for training SentencePiece model.
vocab_size: the size of vocabulary (Default: 20,000).
model_type: the type of SentencePiece model, including unigram,
bpe, char, word.
model_prefix: the prefix of the files saving model and vocab.
Outputs:
The model and vocab are saved in two separate files with
model_prefix.
Examples:
>>> from torchtext.data.functional import generate_sp_model
>>> generate_sp_model('test.csv', vocab_size=23456, model_prefix='spm_user')
"""
torch.ops.torchtext.generate_sp_model(filename, vocab_size, model_type, model_prefix)
def load_sp_model(spm):
r"""Load a sentencepiece model for file.
Args:
spm: the file path or a file object saving the sentencepiece model.
Outputs:
output: a SentencePiece model.
Examples:
>>> from torchtext.data.functional import load_sp_model
>>> sp_model = load_sp_model("m_user.model")
>>> sp_model = load_sp_model(open("m_user.model", 'rb'))
"""
if isinstance(spm, str):
return torch.ops.torchtext.load_sp_model(spm)
elif isinstance(spm, io.BufferedReader):
return torch.ops.torchtext.load_sp_model_string(spm.read())
else:
raise TypeError(
f"Unsupported type for spm argument: {type(spm).__name__}. "
+ "Supported types are: "
+ ", ".join(["str", "io.BufferedReader"])
)
def sentencepiece_numericalizer(sp_model):
r"""A sentencepiece model to numericalize a text sentence into
a generator over the ids.
Args:
sp_model: a SentencePiece model.
Outputs:
output: a generator with the input of text sentence and the output of the
corresponding ids based on SentencePiece model.
Examples:
>>> from torchtext.data.functional import sentencepiece_numericalizer
>>> sp_id_generator = sentencepiece_numericalizer(sp_model)
>>> list_a = ["sentencepiece encode as pieces", "examples to try!"]
>>> list(sp_id_generator(list_a))
[[9858, 9249, 1629, 1305, 1809, 53, 842],
[2347, 13, 9, 150, 37]]
"""
def _internal_func(txt_iter):
for line in txt_iter:
yield sp_model.EncodeAsIds(line)
return _internal_func
def sentencepiece_tokenizer(sp_model):
r"""A sentencepiece model to tokenize a text sentence into
a generator over the tokens.
Args:
sp_model: a SentencePiece model.
Outputs:
output: a generator with the input of text sentence and the output of the
corresponding tokens based on SentencePiece model.
Examples:
>>> from torchtext.data.functional import sentencepiece_tokenizer
>>> sp_tokens_generator = sentencepiece_tokenizer(sp_model)
>>> list_a = ["sentencepiece encode as pieces", "examples to try!"]
>>> list(sp_tokens_generator(list_a))
[['_sentence', 'piece', '_en', 'co', 'de', '_as', '_pieces'],
['_example', 's', '_to', '_try', '!']]
"""
def _internal_func(txt_iter):
for line in txt_iter:
yield sp_model.EncodeAsPieces(line)
return _internal_func
def custom_replace(replace_pattern):
r"""A transform to convert text string.
Examples:
>>> from torchtext.data.functional import custom_replace
>>> custom_replace_transform = custom_replace([(r'S', 's'), (r'\s+', ' ')])
>>> list_a = ["Sentencepiece encode aS pieces", "exampleS to try!"]
>>> list(custom_replace_transform(list_a))
['sentencepiece encode as pieces', 'examples to try!']
"""
_patterns = list((re.compile(p), r) for (p, r) in replace_pattern)
def _internal_func(txt_iter):
for line in txt_iter:
for pattern_re, replaced_str in _patterns:
line = pattern_re.sub(replaced_str, line)
yield line
return _internal_func
def simple_space_split(iterator):
r"""A transform to split text string by spaces.
Examples:
>>> from torchtext.data.functional import simple_space_split
>>> list_a = ["Sentencepiece encode as pieces", "example to try!"]
>>> list(simple_space_split(list_a))
[['Sentencepiece', 'encode', 'as', 'pieces'], ['example', 'to', 'try!']]
"""
for line in iterator:
yield line.split()
def numericalize_tokens_from_iterator(vocab, iterator, removed_tokens=None):
r"""Yield a list of ids from an token iterator with a vocab.
Args:
vocab: the vocabulary convert token into id.
iterator: the iterator yield a list of tokens.
removed_tokens: removed tokens from output dataset (Default: None)
Examples:
>>> from torchtext.data.functional import simple_space_split
>>> from torchtext.data.functional import numericalize_tokens_from_iterator
>>> vocab = {'Sentencepiece' : 0, 'encode' : 1, 'as' : 2, 'pieces' : 3}
>>> ids_iter = numericalize_tokens_from_iterator(vocab,
>>> simple_space_split(["Sentencepiece as pieces",
>>> "as pieces"]))
>>> for ids in ids_iter:
>>> print([num for num in ids])
>>> [0, 2, 3]
>>> [2, 3]
"""
for tokens in iterator:
if removed_tokens is None:
yield iter(vocab[token] for token in tokens)
else:
yield iter(map(lambda x: vocab[x], filter(lambda x: x not in removed_tokens, tokens)))
_patterns = [
(r"<.*>", ""),
(r"&", "&"),
(r"<", "<"),
(r">", ">"),
(r"<ref[^<]*<\/ref>", ""),
(r"<[^>]*>", ""),
(r"\[http:[^] ]*", "["),
(r"\|thumb", ""),
(r"\|left", ""),
(r"\|right", ""),
(r"\|\d+px", ""),
(r"\[\[image:[^\[\]]*\|", ""),
(r"\[\[category:([^|\]]*)[^]]*\]\]", "[[$1]]"),
(r"\[\[[a-z\-]*:[^\]]*\]\]", ""),
(r"\[\[[^\|\]]*\|", "[["),
(r"\{\{[^\}]*\}\}", ""),
(r"\{[^\}]*\}", ""),
(r"\[", ""),
(r"\]", ""),
(r"&[^;]*;", " "),
(r"A", "a"),
(r"B", "b"),
(r"C", "c"),
(r"D", "d"),
(r"E", "e"),
(r"F", "f"),
(r"G", "g"),
(r"H", "h"),
(r"I", "i"),
(r"J", "j"),
(r"K", "k"),
(r"L", "l"),
(r"M", "m"),
(r"N", "n"),
(r"O", "o"),
(r"P", "p"),
(r"Q", "q"),
(r"R", "r"),
(r"S", "s"),
(r"T", "t"),
(r"U", "u"),
(r"V", "v"),
(r"W", "w"),
(r"X", "x"),
(r"Y", "y"),
(r"Z", "z"),
(r"0", " zero "),
(r"1", " one "),
(r"2", " two "),
(r"3", " three "),
(r"4", " four "),
(r"5", " five "),
(r"6", " six "),
(r"7", " seven "),
(r"8", " eight "),
(r"9", " nine "),
(r"[^a-z\n]+", " "),
(r"\n ", ""),
(r"\s+", " "),
(r"\n\s*\n", r"\n"),
]
def filter_wikipedia_xml(text_iterator):
r"""Filter wikipedia xml lines according to https://github.com/facebookresearch/fastText/blob/master/wikifil.pl
args:
text_iterator: An iterator type object that yields strings. Examples include string list, text io, generators etc.
Examples:
>>> from torchtext.data.functional import filter_wikipedia_xml
>>> from torchtext.datasets import EnWik9
>>> data_iter = EnWik9(split='train')
>>> filter_data_iter = filter_wikipedia_xml(data_iter)
>>> file_name = '.data/EnWik9/enwik9'
>>> filter_data_iter = filter_wikipedia_xml(open(file_name,'r'))
"""
try:
iter(text_iterator)
except:
raise TypeError("Input {} must support iterator semantics".format(text_iterator))
norm_transform = custom_replace(_patterns)
for line in text_iterator:
if "#redirect" in line or "#REDIRECT" in line:
continue
line = list(norm_transform([line]))[0].strip()
if line:
yield line
def to_map_style_dataset(iter_data):
r"""Convert iterable-style dataset to map-style dataset.
args:
iter_data: An iterator type object. Examples include Iterable datasets, string list, text io, generators etc.
Examples:
>>> from torchtext.datasets import IMDB
>>> from torchtext.data import to_map_style_dataset
>>> train_iter = IMDB(split='train')
>>> train_dataset = to_map_style_dataset(train_iter)
>>> file_name = '.data/EnWik9/enwik9'
>>> data_iter = to_map_style_dataset(open(file_name,'r'))
"""
# Inner class to convert iterable-style to map-style dataset
class _MapStyleDataset(torch.utils.data.Dataset):
def __init__(self, iter_data) -> None:
# TODO Avoid list issue #1296
self._data = list(iter_data)
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
return self._data[idx]
return _MapStyleDataset(iter_data)
|