File: imdb.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (124 lines) | stat: -rw-r--r-- 4,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from functools import partial
from pathlib import Path
from typing import Tuple, Union

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import _create_dataset_directory
from torchtext.data.datasets_utils import _wrap_split_argument

if is_module_available("torchdata"):
    from torchdata.datapipes.iter import FileOpener, IterableWrapper
    from torchtext._download_hooks import HttpReader

URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"

MD5 = "7c2ac02c03563afcf9b574c7e56c153a"

NUM_LINES = {
    "train": 25000,
    "test": 25000,
}

MAP_LABELS = {"neg": 1, "pos": 2}

_PATH = "aclImdb_v1.tar.gz"

DATASET_NAME = "IMDB"


def _filepath_fn(root, _=None):
    return os.path.join(root, _PATH)


def _decompressed_filepath_fn(root, decompressed_folder, split, labels, _=None):
    return os.path.join(root, decompressed_folder, split)


def _filter_fn(filter_imdb_data, split, t):
    return filter_imdb_data(split, t[0])


def _path_map_fn(t):
    return Path(t[0]).parts[-2], t[1]


def _encode_map_fn(x):
    return x[0], x[1].encode()


def _cache_filepath_fn(root, decompressed_folder, split, x):
    return os.path.join(root, decompressed_folder, split, x)


def _modify_res(t):
    return MAP_LABELS[Path(t[0]).parts[-1]], t[1]


def filter_imdb_data(key, fname):
    labels = {"neg", "pos"}
    # eg. fname = "aclImdb/train/neg/12416_3.txt"
    *_, split, label, file = Path(fname).parts
    return key == split and label in labels


@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def IMDB(root: str, split: Union[Tuple[str], str]):
    """IMDB Dataset

    .. warning::

        using datapipes is still currently subject to a few caveats. if you wish
        to use this dataset with shuffling, multi-processing, or distributed
        learning, please see :ref:`this note <datapipes_warnings>` for further
        instructions.

    For additional details refer to http://ai.stanford.edu/~amaas/data/sentiment/

    Number of lines per split:
        - train: 25000
        - test: 25000

    Args:
        root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
        split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `test`)

    :returns: DataPipe that yields tuple of label (1 to 2) and text containing the movie review
    :rtype: (int, str)
    """
    if not is_module_available("torchdata"):
        raise ModuleNotFoundError(
            "Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
        )

    url_dp = IterableWrapper([URL])

    cache_compressed_dp = url_dp.on_disk_cache(
        filepath_fn=partial(_filepath_fn, root),
        hash_dict={_filepath_fn(root): MD5},
        hash_type="md5",
    )
    cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)

    labels = {"neg", "pos"}
    decompressed_folder = "aclImdb_v1"
    cache_decompressed_dp = cache_compressed_dp.on_disk_cache(
        filepath_fn=partial(_decompressed_filepath_fn, root, decompressed_folder, split, labels)
    )
    cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b")
    cache_decompressed_dp = cache_decompressed_dp.load_from_tar()
    cache_decompressed_dp = cache_decompressed_dp.filter(partial(_filter_fn, filter_imdb_data, split))

    # eg. "aclImdb/train/neg/12416_3.txt" -> "neg"
    cache_decompressed_dp = cache_decompressed_dp.map(_path_map_fn)
    cache_decompressed_dp = cache_decompressed_dp.readlines(decode=True)
    cache_decompressed_dp = cache_decompressed_dp.lines_to_paragraphs()  # group by label in cache file
    cache_decompressed_dp = cache_decompressed_dp.map(_encode_map_fn)
    cache_decompressed_dp = cache_decompressed_dp.end_caching(
        mode="wb", filepath_fn=partial(_cache_filepath_fn, root, decompressed_folder, split), skip_read=True
    )

    data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
    # get label from cache file, eg. "aclImdb_v1/train/neg" -> "neg"
    return data_dp.readlines().map(_modify_res).shuffle().set_shuffle(False).sharding_filter()