1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
from typing import Optional, Tuple
import torch
class MultiheadAttentionContainer(torch.nn.Module):
def __init__(self, nhead, in_proj_container, attention_layer, out_proj, batch_first=False) -> None:
r"""A multi-head attention container
Args:
nhead: the number of heads in the multiheadattention model
in_proj_container: A container of multi-head in-projection linear layers (a.k.a nn.Linear).
attention_layer: The custom attention layer. The input sent from MHA container to the attention layer
is in the shape of `(..., L, N * H, E / H)` for query and `(..., S, N * H, E / H)` for key/value
while the output shape of the attention layer is expected to be `(..., L, N * H, E / H)`.
The attention_layer needs to support broadcast if users want the overall MultiheadAttentionContainer
with broadcast.
out_proj: The multi-head out-projection layer (a.k.a nn.Linear).
batch_first: If ``True``, then the input and output tensors are provided
as `(..., N, L, E)`. Default: ``False``
Examples::
>>> import torch
>>> from torchtext.nn import MultiheadAttentionContainer, InProjContainer, ScaledDotProduct
>>> embed_dim, num_heads, bsz = 10, 5, 64
>>> in_proj_container = InProjContainer(torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim))
>>> MHA = MultiheadAttentionContainer(num_heads,
in_proj_container,
ScaledDotProduct(),
torch.nn.Linear(embed_dim, embed_dim))
>>> query = torch.rand((21, bsz, embed_dim))
>>> key = value = torch.rand((16, bsz, embed_dim))
>>> attn_output, attn_weights = MHA(query, key, value)
>>> print(attn_output.shape)
>>> torch.Size([21, 64, 10])
"""
super(MultiheadAttentionContainer, self).__init__()
self.nhead = nhead
self.in_proj_container = in_proj_container
self.attention_layer = attention_layer
self.out_proj = out_proj
self.batch_first = batch_first
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
bias_k: Optional[torch.Tensor] = None,
bias_v: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
query (Tensor): The query of the attention function.
See "Attention Is All You Need" for more details.
key (Tensor): The keys of the attention function.
See "Attention Is All You Need" for more details.
value (Tensor): The values of the attention function.
See "Attention Is All You Need" for more details.
attn_mask (BoolTensor, optional): 3D mask that prevents attention to certain positions.
bias_k (Tensor, optional): one more key and value sequence to be added to keys at
sequence dim (dim=-3). Those are used for incremental decoding. Users should provide
``bias_v``.
bias_v (Tensor, optional): one more key and value sequence to be added to values at
sequence dim (dim=-3). Those are used for incremental decoding. Users should also provide
``bias_k``.
Shape:
- Inputs:
- query: :math:`(..., L, N, E)`
- key: :math:`(..., S, N, E)`
- value: :math:`(..., S, N, E)`
- attn_mask, bias_k and bias_v: same with the shape of the corresponding args in attention layer.
- Outputs:
- attn_output: :math:`(..., L, N, E)`
- attn_output_weights: :math:`(N * H, L, S)`
Note: It's optional to have the query/key/value inputs with more than three dimensions (for broadcast purpose).
The MultiheadAttentionContainer module will operate on the last three dimensions.
where where L is the target length, S is the sequence length, H is the number of attention heads,
N is the batch size, and E is the embedding dimension.
"""
if self.batch_first:
query, key, value = query.transpose(-3, -2), key.transpose(-3, -2), value.transpose(-3, -2)
tgt_len, src_len, bsz, embed_dim = query.size(-3), key.size(-3), query.size(-2), query.size(-1)
q, k, v = self.in_proj_container(query, key, value)
assert q.size(-1) % self.nhead == 0, "query's embed_dim must be divisible by the number of heads"
head_dim = q.size(-1) // self.nhead
q = q.reshape(tgt_len, bsz * self.nhead, head_dim)
assert k.size(-1) % self.nhead == 0, "key's embed_dim must be divisible by the number of heads"
head_dim = k.size(-1) // self.nhead
k = k.reshape(src_len, bsz * self.nhead, head_dim)
assert v.size(-1) % self.nhead == 0, "value's embed_dim must be divisible by the number of heads"
head_dim = v.size(-1) // self.nhead
v = v.reshape(src_len, bsz * self.nhead, head_dim)
attn_output, attn_output_weights = self.attention_layer(
q, k, v, attn_mask=attn_mask, bias_k=bias_k, bias_v=bias_v
)
attn_output = attn_output.reshape(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
if self.batch_first:
attn_output = attn_output.transpose(-3, -2)
return attn_output, attn_output_weights
class ScaledDotProduct(torch.nn.Module):
def __init__(self, dropout=0.0, batch_first=False) -> None:
r"""Processes a projected query and key-value pair to apply
scaled dot product attention.
Args:
dropout (float): probability of dropping an attention weight.
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)`. Default: ``False``
Examples::
>>> import torch, torchtext
>>> SDP = torchtext.nn.ScaledDotProduct(dropout=0.1)
>>> q = torch.randn(21, 256, 3)
>>> k = v = torch.randn(21, 256, 3)
>>> attn_output, attn_weights = SDP(q, k, v)
>>> print(attn_output.shape, attn_weights.shape)
torch.Size([21, 256, 3]) torch.Size([256, 21, 21])
"""
super(ScaledDotProduct, self).__init__()
self.dropout = dropout
self.batch_first = batch_first
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
bias_k: Optional[torch.Tensor] = None,
bias_v: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""Uses a scaled dot product with the projected key-value pair to update
the projected query.
Args:
query (Tensor): Projected query
key (Tensor): Projected key
value (Tensor): Projected value
attn_mask (BoolTensor, optional): 3D mask that prevents attention to certain positions.
attn_mask (BoolTensor, optional): 3D mask that prevents attention to certain positions.
bias_k (Tensor, optional): one more key and value sequence to be added to keys at
sequence dim (dim=-3). Those are used for incremental decoding. Users should provide
``bias_v``.
bias_v (Tensor, optional): one more key and value sequence to be added to values at
sequence dim (dim=-3). Those are used for incremental decoding. Users should also provide
``bias_k``.
Shape:
- query: :math:`(..., L, N * H, E / H)`
- key: :math:`(..., S, N * H, E / H)`
- value: :math:`(..., S, N * H, E / H)`
- attn_mask: :math:`(N * H, L, S)`, positions with ``True`` are not allowed to attend
while ``False`` values will be unchanged.
- bias_k and bias_v:bias: :math:`(1, N * H, E / H)`
- Output: :math:`(..., L, N * H, E / H)`, :math:`(N * H, L, S)`
Note: It's optional to have the query/key/value inputs with more than three dimensions (for broadcast purpose).
The ScaledDotProduct module will operate on the last three dimensions.
where L is the target length, S is the source length, H is the number
of attention heads, N is the batch size, and E is the embedding dimension.
"""
if self.batch_first:
query, key, value = query.transpose(-3, -2), key.transpose(-3, -2), value.transpose(-3, -2)
if bias_k is not None and bias_v is not None:
assert (
key.size(-1) == bias_k.size(-1) and key.size(-2) == bias_k.size(-2) and bias_k.size(-3) == 1
), "Shape of bias_k is not supported"
assert (
value.size(-1) == bias_v.size(-1) and value.size(-2) == bias_v.size(-2) and bias_v.size(-3) == 1
), "Shape of bias_v is not supported"
key = torch.cat([key, bias_k])
value = torch.cat([value, bias_v])
if attn_mask is not None:
attn_mask = torch.nn.functional.pad(attn_mask, (0, 1))
tgt_len, head_dim = query.size(-3), query.size(-1)
assert query.size(-1) == key.size(-1) == value.size(-1), "The feature dim of query, key, value must be equal."
assert key.size() == value.size(), "Shape of key, value must match"
src_len = key.size(-3)
batch_heads = max(query.size(-2), key.size(-2))
# Scale query
query, key, value = query.transpose(-2, -3), key.transpose(-2, -3), value.transpose(-2, -3)
query = query * (float(head_dim) ** -0.5)
if attn_mask is not None:
if attn_mask.dim() != 3:
raise RuntimeError("attn_mask must be a 3D tensor.")
if (
(attn_mask.size(-1) != src_len)
or (attn_mask.size(-2) != tgt_len)
or (attn_mask.size(-3) != 1 and attn_mask.size(-3) != batch_heads)
):
raise RuntimeError("The size of the attn_mask is not correct.")
if attn_mask.dtype != torch.bool:
raise RuntimeError("Only bool tensor is supported for attn_mask")
# Dot product of q, k
attn_output_weights = torch.matmul(query, key.transpose(-2, -1))
if attn_mask is not None:
attn_output_weights.masked_fill_(
attn_mask,
-1e8,
)
attn_output_weights = torch.nn.functional.softmax(attn_output_weights, dim=-1)
attn_output_weights = torch.nn.functional.dropout(attn_output_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_output_weights, value)
if self.batch_first:
return attn_output, attn_output_weights
else:
return attn_output.transpose(-3, -2), attn_output_weights
class InProjContainer(torch.nn.Module):
def __init__(self, query_proj, key_proj, value_proj) -> None:
r"""A in-proj container to project query/key/value in MultiheadAttention. This module happens before reshaping
the projected query/key/value into multiple heads. See the linear layers (bottom) of Multi-head Attention in
Fig 2 of Attention Is All You Need paper. Also check the usage example
in torchtext.nn.MultiheadAttentionContainer.
Args:
query_proj: a proj layer for query. A typical projection layer is torch.nn.Linear.
key_proj: a proj layer for key. A typical projection layer is torch.nn.Linear.
value_proj: a proj layer for value. A typical projection layer is torch.nn.Linear.
"""
super(InProjContainer, self).__init__()
self.query_proj = query_proj
self.key_proj = key_proj
self.value_proj = value_proj
def forward(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""Projects the input sequences using in-proj layers. query/key/value are simply passed to
the forward func of query/key/value_proj, respectively.
Args:
query (Tensor): The query to be projected.
key (Tensor): The keys to be projected.
value (Tensor): The values to be projected.
Examples::
>>> import torch
>>> from torchtext.nn import InProjContainer
>>> embed_dim, bsz = 10, 64
>>> in_proj_container = InProjContainer(torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim))
>>> q = torch.rand((5, bsz, embed_dim))
>>> k = v = torch.rand((6, bsz, embed_dim))
>>> q, k, v = in_proj_container(q, k, v)
"""
return self.query_proj(query), self.key_proj(key), self.value_proj(value)
def generate_square_subsequent_mask(nbatch, sz):
r"""Generate a square mask for the sequence. The masked positions are filled with True.
Unmasked positions are filled with False.
Args:
nbatch: the number of batch size
sz: the size of square mask
"""
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1).repeat(nbatch, 1, 1)
return mask
|