File: utils.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (230 lines) | stat: -rw-r--r-- 8,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gzip
import hashlib
import logging
import os
import tarfile
import zipfile

import torch
from torchtext import _CACHE_DIR

from ._download_hooks import _DATASET_DOWNLOAD_MANAGER


logger = logging.getLogger(__name__)


def reporthook(t):
    """
    https://github.com/tqdm/tqdm.
    """
    last_b = [0]

    def inner(b=1, bsize=1, tsize=None):
        """
        b: int, optional
        Number of blocks just transferred [default: 1].
        bsize: int, optional
        Size of each block (in tqdm units) [default: 1].
        tsize: int, optional
        Total size (in tqdm units). If [default: None] remains unchanged.
        """
        if tsize is not None:
            t.total = tsize
        t.update((b - last_b[0]) * bsize)
        last_b[0] = b

    return inner


def validate_file(file_obj, hash_value, hash_type="sha256"):
    """Validate a given file object with its hash.
    Args:
        file_obj: File object to read from.
        hash_value (str): Hash for url.
        hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``).
    Returns:
        bool: return True if its a valid file, else False.
    """

    if hash_type == "sha256":
        hash_func = hashlib.sha256()
    elif hash_type == "md5":
        hash_func = hashlib.md5()
    else:
        raise ValueError

    while True:
        # Read by chunk to avoid filling memory
        chunk = file_obj.read(1024 ** 2)
        if not chunk:
            break
        hash_func.update(chunk)
    return hash_func.hexdigest() == hash_value


def _check_hash(path, hash_value, hash_type):
    logger.info("Validating hash {} matches hash of {}".format(hash_value, path))
    with open(path, "rb") as file_obj:
        if not validate_file(file_obj, hash_value, hash_type):
            raise RuntimeError(
                "The hash of {} does not match. Delete the file manually and retry.".format(os.path.abspath(path))
            )


def download_from_url(url, path=None, root=".data", overwrite=False, hash_value=None, hash_type="sha256"):
    """Download file, with logic (from tensor2tensor) for Google Drive. Returns
    the path to the downloaded file.
    Args:
        url: the url of the file from URL header. (None)
        path: path where file will be saved
        root: download folder used to store the file in (.data)
        overwrite: overwrite existing files (False)
        hash_value (str, optional): hash for url (Default: ``None``).
        hash_type (str, optional): hash type, among "sha256" and "md5" (Default: ``"sha256"``).
    Examples:
        >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz'
        >>> torchtext.utils.download_from_url(url)
        >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz'
        >>> torchtext.utils.download_from_url(url)
        >>> '.data/validation.tar.gz'
    """
    # figure out filename and root
    if path is None:
        _, filename = os.path.split(url)
        root = os.path.abspath(root)
        path = os.path.join(root, filename)
    else:
        path = os.path.abspath(path)
        root, filename = os.path.split(os.path.abspath(path))

    # skip download if path exists and overwrite is not True
    if os.path.exists(path):
        logger.info("File %s already exists." % path)
        if not overwrite:
            if hash_value:
                _check_hash(path, hash_value, hash_type)
            return path

    # make root dir if does not exist
    if not os.path.exists(root):
        try:
            os.makedirs(root)
        except OSError:
            raise OSError("Can't create the download directory {}.".format(root))

    # download data and move to path
    _DATASET_DOWNLOAD_MANAGER.get_local_path(url, destination=path)

    logger.info("File {} downloaded.".format(path))

    # validate
    if hash_value:
        _check_hash(path, hash_value, hash_type)

    # all good
    return path


def extract_archive(from_path, to_path=None, overwrite=False):
    """Extract archive.
    Args:
        from_path: the path of the archive.
        to_path: the root path of the extracted files (directory of from_path)
        overwrite: overwrite existing files (False)
    Returns:
        List of paths to extracted files even if not overwritten.
    Examples:
        >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz'
        >>> from_path = './validation.tar.gz'
        >>> to_path = './'
        >>> torchtext.utils.download_from_url(url, from_path)
        >>> torchtext.utils.extract_archive(from_path, to_path)
        >>> ['.data/val.de', '.data/val.en']
        >>> torchtext.utils.download_from_url(url, from_path)
        >>> torchtext.utils.extract_archive(from_path, to_path)
        >>> ['.data/val.de', '.data/val.en']
    """

    if to_path is None:
        to_path = os.path.dirname(from_path)

    if from_path.endswith((".tar.gz", ".tgz")):
        logger.info("Opening tar file {}.".format(from_path))
        with tarfile.open(from_path, "r") as tar:
            files = []
            for file_ in tar:
                file_path = os.path.join(to_path, file_.name)
                if file_.isfile():
                    files.append(file_path)
                    if os.path.exists(file_path):
                        logger.info("{} already extracted.".format(file_path))
                        if not overwrite:
                            continue
                tar.extract(file_, to_path)
            logger.info("Finished extracting tar file {}.".format(from_path))
            return files

    elif from_path.endswith(".zip"):
        assert zipfile.is_zipfile(from_path), from_path
        logger.info("Opening zip file {}.".format(from_path))
        with zipfile.ZipFile(from_path, "r") as zfile:
            files = []
            for file_ in zfile.namelist():
                file_path = os.path.join(to_path, file_)
                files.append(file_path)
                if os.path.exists(file_path):
                    logger.info("{} already extracted.".format(file_path))
                    if not overwrite:
                        continue
                zfile.extract(file_, to_path)
        files = [f for f in files if os.path.isfile(f)]
        logger.info("Finished extracting zip file {}.".format(from_path))
        return files

    elif from_path.endswith(".gz"):
        logger.info("Opening gz file {}.".format(from_path))
        default_block_size = 65536
        filename = from_path[:-3]
        files = [filename]
        with gzip.open(from_path, "rb") as gzfile, open(filename, "wb") as d_file:
            while True:
                block = gzfile.read(default_block_size)
                if not block:
                    break
                else:
                    d_file.write(block)
            d_file.write(block)
        logger.info("Finished extracting gz file {}.".format(from_path))
        return files

    else:
        raise NotImplementedError("We currently only support tar.gz, .tgz, .gz and zip achives.")


def _log_class_usage(klass):
    identifier = "torchtext"
    if klass and hasattr(klass, "__name__"):
        identifier += f".{klass.__name__}"
    torch._C._log_api_usage_once(identifier)


def get_asset_local_path(asset_path: str, overwite=False) -> str:
    """Get local path for assets. Download if path does not exost locally
    Args:
        asset_path: Local path to asset or remote URL
        overwrite: Indicate whether to overwrite the file when downloading from URL (default: False)
    Returns:
        bool: local path of the asset after downloading or reading from cache
    Examples:
        >>> url = 'http://<HOST>/file.txt'
        >>> torchtext.utils.get_asset_local_path(url)
        >>> '.data/file.txt'
        >>> torchtext.utils.get_asset_local_path('/home/user/file.txt')
        >>> '/home/user/file.txt'
    """
    if os.path.exists(asset_path):
        local_path = asset_path
    else:
        local_path = download_from_url(url=asset_path, root=_CACHE_DIR, overwrite=overwite)
    return local_path