1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
.. _models:
Models and pre-trained weights
##############################
The ``torchvision.models`` subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
segmentation, object detection, instance segmentation, person
keypoint detection, video classification, and optical flow.
General information on pre-trained weights
==========================================
TorchVision offers pre-trained weights for every provided architecture, using
the PyTorch :mod:`torch.hub`. Instancing a pre-trained model will download its
weights to a cache directory. This directory can be set using the `TORCH_HOME`
environment variable. See :func:`torch.hub.load_state_dict_from_url` for details.
.. note::
The pre-trained models provided in this library may have their own licenses or
terms and conditions derived from the dataset used for training. It is your
responsibility to determine whether you have permission to use the models for
your use case.
.. note ::
Backward compatibility is guaranteed for loading a serialized
``state_dict`` to the model created using old PyTorch version.
On the contrary, loading entire saved models or serialized
``ScriptModules`` (serialized using older versions of PyTorch)
may not preserve the historic behaviour. Refer to the following
`documentation
<https://pytorch.org/docs/stable/notes/serialization.html#id6>`_
Initializing pre-trained models
-------------------------------
As of v0.13, TorchVision offers a new `Multi-weight support API
<https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/>`_
for loading different weights to the existing model builder methods:
.. code:: python
from torchvision.models import resnet50, ResNet50_Weights
# Old weights with accuracy 76.130%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
# New weights with accuracy 80.858%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
# Best available weights (currently alias for IMAGENET1K_V2)
# Note that these weights may change across versions
resnet50(weights=ResNet50_Weights.DEFAULT)
# Strings are also supported
resnet50(weights="IMAGENET1K_V2")
# No weights - random initialization
resnet50(weights=None)
Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:
.. code:: python
from torchvision.models import resnet50, ResNet50_Weights
# Using pretrained weights:
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
resnet50(weights="IMAGENET1K_V1")
resnet50(pretrained=True) # deprecated
resnet50(True) # deprecated
# Using no weights:
resnet50(weights=None)
resnet50()
resnet50(pretrained=False) # deprecated
resnet50(False) # deprecated
Note that the ``pretrained`` parameter is now deprecated, using it will emit warnings and will be removed on v0.15.
Using the pre-trained models
----------------------------
Before using the pre-trained models, one must preprocess the image
(resize with right resolution/interpolation, apply inference transforms,
rescale the values etc). There is no standard way to do this as it depends on
how a given model was trained. It can vary across model families, variants or
even weight versions. Using the correct preprocessing method is critical and
failing to do so may lead to decreased accuracy or incorrect outputs.
All the necessary information for the inference transforms of each pre-trained
model is provided on its weights documentation. To simplify inference, TorchVision
bundles the necessary preprocessing transforms into each model weight. These are
accessible via the ``weight.transforms`` attribute:
.. code:: python
# Initialize the Weight Transforms
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()
# Apply it to the input image
img_transformed = preprocess(img)
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
.. code:: python
# Initialize model
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
# Set model to eval mode
model.eval()
Model Registration Mechanism
----------------------------
.. betastatus:: registration mechanism
As of v0.14, TorchVision offers a new model registration mechanism which allows retreaving models
and weights by their names. Here are a few examples on how to use them:
.. code:: python
# List available models
all_models = list_models()
classification_models = list_models(module=torchvision.models)
# Initialize models
m1 = get_model("mobilenet_v3_large", weights=None)
m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")
# Fetch weights
weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT
weights_enum = get_model_weights("quantized_mobilenet_v3_large")
assert weights_enum == MobileNet_V3_Large_QuantizedWeights
weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
assert weights_enum == weights_enum2
Here are the available public methods of the model registration mechanism:
.. currentmodule:: torchvision.models
.. autosummary::
:toctree: generated/
:template: function.rst
get_model
get_model_weights
get_weight
list_models
Using models from Hub
---------------------
Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:
.. code:: python
import torch
# Option 1: passing weights param as string
model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
# Option 2: passing weights param as enum
weights = torch.hub.load("pytorch/vision", "get_weight", weights="ResNet50_Weights.IMAGENET1K_V2")
model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)
You can also retrieve all the available weights of a specific model via PyTorch Hub by doing:
.. code:: python
import torch
weight_enum = torch.hub.load("pytorch/vision", "get_model_weights", name="resnet50")
print([weight for weight in weight_enum])
The only exception to the above are the detection models included on
:mod:`torchvision.models.detection`. These models require TorchVision
to be installed because they depend on custom C++ operators.
Classification
==============
.. currentmodule:: torchvision.models
The following classification models are available, with or without pre-trained
weights:
.. toctree::
:maxdepth: 1
models/alexnet
models/convnext
models/densenet
models/efficientnet
models/efficientnetv2
models/googlenet
models/inception
models/maxvit
models/mnasnet
models/mobilenetv2
models/mobilenetv3
models/regnet
models/resnet
models/resnext
models/shufflenetv2
models/squeezenet
models/swin_transformer
models/vgg
models/vision_transformer
models/wide_resnet
|
Here is an example of how to use the pre-trained image classification models:
.. code:: python
from torchvision.io import read_image
from torchvision.models import resnet50, ResNet50_Weights
img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
# Step 1: Initialize model with the best available weights
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
model.eval()
# Step 2: Initialize the inference transforms
preprocess = weights.transforms()
# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)
# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
Table of all available classification weights
---------------------------------------------
Accuracies are reported on ImageNet-1K using single crops:
.. include:: generated/classification_table.rst
Quantized models
----------------
.. currentmodule:: torchvision.models.quantization
The following architectures provide support for INT8 quantized models, with or without
pre-trained weights:
.. toctree::
:maxdepth: 1
models/googlenet_quant
models/inception_quant
models/mobilenetv2_quant
models/mobilenetv3_quant
models/resnet_quant
models/resnext_quant
models/shufflenetv2_quant
|
Here is an example of how to use the pre-trained quantized image classification models:
.. code:: python
from torchvision.io import read_image
from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights
img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
# Step 1: Initialize model with the best available weights
weights = ResNet50_QuantizedWeights.DEFAULT
model = resnet50(weights=weights, quantize=True)
model.eval()
# Step 2: Initialize the inference transforms
preprocess = weights.transforms()
# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)
# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score}%")
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
Table of all available quantized classification weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Accuracies are reported on ImageNet-1K using single crops:
.. include:: generated/classification_quant_table.rst
Semantic Segmentation
=====================
.. currentmodule:: torchvision.models.segmentation
.. betastatus:: segmentation module
The following semantic segmentation models are available, with or without
pre-trained weights:
.. toctree::
:maxdepth: 1
models/deeplabv3
models/fcn
models/lraspp
|
Here is an example of how to use the pre-trained semantic segmentation models:
.. code:: python
from torchvision.io.image import read_image
from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
from torchvision.transforms.functional import to_pil_image
img = read_image("gallery/assets/dog1.jpg")
# Step 1: Initialize model with the best available weights
weights = FCN_ResNet50_Weights.DEFAULT
model = fcn_resnet50(weights=weights)
model.eval()
# Step 2: Initialize the inference transforms
preprocess = weights.transforms()
# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)
# Step 4: Use the model and visualize the prediction
prediction = model(batch)["out"]
normalized_masks = prediction.softmax(dim=1)
class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
mask = normalized_masks[0, class_to_idx["dog"]]
to_pil_image(mask).show()
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
The output format of the models is illustrated in :ref:`semantic_seg_output`.
Table of all available semantic segmentation weights
----------------------------------------------------
All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:
.. include:: generated/segmentation_table.rst
.. _object_det_inst_seg_pers_keypoint_det:
Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision. The models expect a list of ``Tensor[C, H, W]``.
Check the constructor of the models for more information.
.. betastatus:: detection module
Object Detection
----------------
.. currentmodule:: torchvision.models.detection
The following object detection models are available, with or without pre-trained
weights:
.. toctree::
:maxdepth: 1
models/faster_rcnn
models/fcos
models/retinanet
models/ssd
models/ssdlite
|
Here is an example of how to use the pre-trained object detection models:
.. code:: python
from torchvision.io.image import read_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
from torchvision.utils import draw_bounding_boxes
from torchvision.transforms.functional import to_pil_image
img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
# Step 1: Initialize model with the best available weights
weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
model.eval()
# Step 2: Initialize the inference transforms
preprocess = weights.transforms()
# Step 3: Apply inference preprocessing transforms
batch = [preprocess(img)]
# Step 4: Use the model and visualize the prediction
prediction = model(batch)[0]
labels = [weights.meta["categories"][i] for i in prediction["labels"]]
box = draw_bounding_boxes(img, boxes=prediction["boxes"],
labels=labels,
colors="red",
width=4, font_size=30)
im = to_pil_image(box.detach())
im.show()
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`instance_seg_output`.
Table of all available Object detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Box MAPs are reported on COCO val2017:
.. include:: generated/detection_table.rst
Instance Segmentation
---------------------
.. currentmodule:: torchvision.models.detection
The following instance segmentation models are available, with or without pre-trained
weights:
.. toctree::
:maxdepth: 1
models/mask_rcnn
|
For details on how to plot the masks of the models, you may refer to :ref:`instance_seg_output`.
Table of all available Instance segmentation weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Box and Mask MAPs are reported on COCO val2017:
.. include:: generated/instance_segmentation_table.rst
Keypoint Detection
------------------
.. currentmodule:: torchvision.models.detection
The following person keypoint detection models are available, with or without
pre-trained weights:
.. toctree::
:maxdepth: 1
models/keypoint_rcnn
|
The classes of the pre-trained model outputs can be found at ``weights.meta["keypoint_names"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`keypoint_output`.
Table of all available Keypoint detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Box and Keypoint MAPs are reported on COCO val2017:
.. include:: generated/detection_keypoint_table.rst
Video Classification
====================
.. currentmodule:: torchvision.models.video
.. betastatus:: video module
The following video classification models are available, with or without
pre-trained weights:
.. toctree::
:maxdepth: 1
models/video_mvit
models/video_resnet
models/video_s3d
|
Here is an example of how to use the pre-trained video classification models:
.. code:: python
from torchvision.io.video import read_video
from torchvision.models.video import r3d_18, R3D_18_Weights
vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
vid = vid[:32] # optionally shorten duration
# Step 1: Initialize model with the best available weights
weights = R3D_18_Weights.DEFAULT
model = r3d_18(weights=weights)
model.eval()
# Step 2: Initialize the inference transforms
preprocess = weights.transforms()
# Step 3: Apply inference preprocessing transforms
batch = preprocess(vid).unsqueeze(0)
# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
label = prediction.argmax().item()
score = prediction[label].item()
category_name = weights.meta["categories"][label]
print(f"{category_name}: {100 * score}%")
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
Table of all available video classification weights
---------------------------------------------------
Accuracies are reported on Kinetics-400 using single crops for clip length 16:
.. include:: generated/video_table.rst
Optical Flow
============
.. currentmodule:: torchvision.models.optical_flow
The following Optical Flow models are available, with or without pre-trained
.. toctree::
:maxdepth: 1
models/raft
|