File: ops.rst

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (103 lines) | stat: -rw-r--r-- 1,838 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
.. _ops:

Operators
=========

.. currentmodule:: torchvision.ops

:mod:`torchvision.ops` implements operators, losses and layers that are specific for Computer Vision.

.. note::
  All operators have native support for TorchScript.


Detection and Segmentation Operators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The below operators perform pre-processing as well as post-processing required in object detection and segmentation models.

.. autosummary::
    :toctree: generated/
    :template: function.rst

    batched_nms
    masks_to_boxes
    nms
    roi_align
    roi_pool
    ps_roi_align
    ps_roi_pool

.. autosummary::
    :toctree: generated/
    :template: class.rst

    FeaturePyramidNetwork
    MultiScaleRoIAlign
    RoIAlign
    RoIPool
    PSRoIAlign
    PSRoIPool


Box Operators
~~~~~~~~~~~~~

These utility functions perform various operations on bounding boxes.

.. autosummary::
    :toctree: generated/
    :template: function.rst

    box_area
    box_convert
    box_iou
    clip_boxes_to_image
    complete_box_iou
    distance_box_iou
    generalized_box_iou
    remove_small_boxes

Losses
~~~~~~

The following vision-specific loss functions are implemented:

.. autosummary::
    :toctree: generated/
    :template: function.rst

    complete_box_iou_loss
    distance_box_iou_loss
    generalized_box_iou_loss
    sigmoid_focal_loss


Layers
~~~~~~

TorchVision provides commonly used building blocks as layers:

.. autosummary::
    :toctree: generated/
    :template: class.rst

    Conv2dNormActivation
    Conv3dNormActivation
    DeformConv2d
    DropBlock2d
    DropBlock3d
    FrozenBatchNorm2d
    MLP
    Permute
    SqueezeExcitation
    StochasticDepth

.. autosummary::
    :toctree: generated/
    :template: function.rst

    deform_conv2d
    drop_block2d
    drop_block3d
    stochastic_depth