File: presets.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (73 lines) | stat: -rw-r--r-- 2,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import transforms as T


class DetectionPresetTrain:
    def __init__(self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)):
        if data_augmentation == "hflip":
            self.transforms = T.Compose(
                [
                    T.RandomHorizontalFlip(p=hflip_prob),
                    T.PILToTensor(),
                    T.ConvertImageDtype(torch.float),
                ]
            )
        elif data_augmentation == "lsj":
            self.transforms = T.Compose(
                [
                    T.ScaleJitter(target_size=(1024, 1024)),
                    T.FixedSizeCrop(size=(1024, 1024), fill=mean),
                    T.RandomHorizontalFlip(p=hflip_prob),
                    T.PILToTensor(),
                    T.ConvertImageDtype(torch.float),
                ]
            )
        elif data_augmentation == "multiscale":
            self.transforms = T.Compose(
                [
                    T.RandomShortestSize(
                        min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                    ),
                    T.RandomHorizontalFlip(p=hflip_prob),
                    T.PILToTensor(),
                    T.ConvertImageDtype(torch.float),
                ]
            )
        elif data_augmentation == "ssd":
            self.transforms = T.Compose(
                [
                    T.RandomPhotometricDistort(),
                    T.RandomZoomOut(fill=list(mean)),
                    T.RandomIoUCrop(),
                    T.RandomHorizontalFlip(p=hflip_prob),
                    T.PILToTensor(),
                    T.ConvertImageDtype(torch.float),
                ]
            )
        elif data_augmentation == "ssdlite":
            self.transforms = T.Compose(
                [
                    T.RandomIoUCrop(),
                    T.RandomHorizontalFlip(p=hflip_prob),
                    T.PILToTensor(),
                    T.ConvertImageDtype(torch.float),
                ]
            )
        else:
            raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')

    def __call__(self, img, target):
        return self.transforms(img, target)


class DetectionPresetEval:
    def __init__(self):
        self.transforms = T.Compose(
            [
                T.PILToTensor(),
                T.ConvertImageDtype(torch.float),
            ]
        )

    def __call__(self, img, target):
        return self.transforms(img, target)