1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
import argparse
import warnings
from math import ceil
from pathlib import Path
import torch
import torchvision.models.optical_flow
import utils
from presets import OpticalFlowPresetEval, OpticalFlowPresetTrain
from torchvision.datasets import FlyingChairs, FlyingThings3D, HD1K, KittiFlow, Sintel
def get_train_dataset(stage, dataset_root):
if stage == "chairs":
transforms = OpticalFlowPresetTrain(crop_size=(368, 496), min_scale=0.1, max_scale=1.0, do_flip=True)
return FlyingChairs(root=dataset_root, split="train", transforms=transforms)
elif stage == "things":
transforms = OpticalFlowPresetTrain(crop_size=(400, 720), min_scale=-0.4, max_scale=0.8, do_flip=True)
return FlyingThings3D(root=dataset_root, split="train", pass_name="both", transforms=transforms)
elif stage == "sintel_SKH": # S + K + H as from paper
crop_size = (368, 768)
transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.2, max_scale=0.6, do_flip=True)
things_clean = FlyingThings3D(root=dataset_root, split="train", pass_name="clean", transforms=transforms)
sintel = Sintel(root=dataset_root, split="train", pass_name="both", transforms=transforms)
kitti_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.3, max_scale=0.5, do_flip=True)
kitti = KittiFlow(root=dataset_root, split="train", transforms=kitti_transforms)
hd1k_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.5, max_scale=0.2, do_flip=True)
hd1k = HD1K(root=dataset_root, split="train", transforms=hd1k_transforms)
# As future improvement, we could probably be using a distributed sampler here
# The distribution is S(.71), T(.135), K(.135), H(.02)
return 100 * sintel + 200 * kitti + 5 * hd1k + things_clean
elif stage == "kitti":
transforms = OpticalFlowPresetTrain(
# resize and crop params
crop_size=(288, 960),
min_scale=-0.2,
max_scale=0.4,
stretch_prob=0,
# flip params
do_flip=False,
# jitter params
brightness=0.3,
contrast=0.3,
saturation=0.3,
hue=0.3 / 3.14,
asymmetric_jitter_prob=0,
)
return KittiFlow(root=dataset_root, split="train", transforms=transforms)
else:
raise ValueError(f"Unknown stage {stage}")
@torch.no_grad()
def _evaluate(model, args, val_dataset, *, padder_mode, num_flow_updates=None, batch_size=None, header=None):
"""Helper function to compute various metrics (epe, etc.) for a model on a given dataset.
We process as many samples as possible with ddp, and process the rest on a single worker.
"""
batch_size = batch_size or args.batch_size
device = torch.device(args.device)
model.eval()
if args.distributed:
sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
else:
sampler = torch.utils.data.SequentialSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(
val_dataset,
sampler=sampler,
batch_size=batch_size,
pin_memory=True,
num_workers=args.workers,
)
num_flow_updates = num_flow_updates or args.num_flow_updates
def inner_loop(blob):
if blob[0].dim() == 3:
# input is not batched so we add an extra dim for consistency
blob = [x[None, :, :, :] if x is not None else None for x in blob]
image1, image2, flow_gt = blob[:3]
valid_flow_mask = None if len(blob) == 3 else blob[-1]
image1, image2 = image1.to(device), image2.to(device)
padder = utils.InputPadder(image1.shape, mode=padder_mode)
image1, image2 = padder.pad(image1, image2)
flow_predictions = model(image1, image2, num_flow_updates=num_flow_updates)
flow_pred = flow_predictions[-1]
flow_pred = padder.unpad(flow_pred).cpu()
metrics, num_pixels_tot = utils.compute_metrics(flow_pred, flow_gt, valid_flow_mask)
# We compute per-pixel epe (epe) and per-image epe (called f1-epe in RAFT paper).
# per-pixel epe: average epe of all pixels of all images
# per-image epe: average epe on each image independently, then average over images
for name in ("epe", "1px", "3px", "5px", "f1"): # f1 is called f1-all in paper
logger.meters[name].update(metrics[name], n=num_pixels_tot)
logger.meters["per_image_epe"].update(metrics["epe"], n=batch_size)
logger = utils.MetricLogger()
for meter_name in ("epe", "1px", "3px", "5px", "per_image_epe", "f1"):
logger.add_meter(meter_name, fmt="{global_avg:.4f}")
num_processed_samples = 0
for blob in logger.log_every(val_loader, header=header, print_freq=None):
inner_loop(blob)
num_processed_samples += blob[0].shape[0] # batch size
if args.distributed:
num_processed_samples = utils.reduce_across_processes(num_processed_samples)
print(
f"Batch-processed {num_processed_samples} / {len(val_dataset)} samples. "
"Going to process the remaining samples individually, if any."
)
if args.rank == 0: # we only need to process the rest on a single worker
for i in range(num_processed_samples, len(val_dataset)):
inner_loop(val_dataset[i])
logger.synchronize_between_processes()
print(header, logger)
def evaluate(model, args):
val_datasets = args.val_dataset or []
if args.weights and args.test_only:
weights = torchvision.models.get_weight(args.weights)
trans = weights.transforms()
def preprocessing(img1, img2, flow, valid_flow_mask):
img1, img2 = trans(img1, img2)
if flow is not None and not isinstance(flow, torch.Tensor):
flow = torch.from_numpy(flow)
if valid_flow_mask is not None and not isinstance(valid_flow_mask, torch.Tensor):
valid_flow_mask = torch.from_numpy(valid_flow_mask)
return img1, img2, flow, valid_flow_mask
else:
preprocessing = OpticalFlowPresetEval()
for name in val_datasets:
if name == "kitti":
# Kitti has different image sizes so we need to individually pad them, we can't batch.
# see comment in InputPadder
if args.batch_size != 1 and (not args.distributed or args.rank == 0):
warnings.warn(
f"Batch-size={args.batch_size} was passed. For technical reasons, evaluating on Kitti can only be done with a batch-size of 1."
)
val_dataset = KittiFlow(root=args.dataset_root, split="train", transforms=preprocessing)
_evaluate(
model, args, val_dataset, num_flow_updates=24, padder_mode="kitti", header="Kitti val", batch_size=1
)
elif name == "sintel":
for pass_name in ("clean", "final"):
val_dataset = Sintel(
root=args.dataset_root, split="train", pass_name=pass_name, transforms=preprocessing
)
_evaluate(
model,
args,
val_dataset,
num_flow_updates=32,
padder_mode="sintel",
header=f"Sintel val {pass_name}",
)
else:
warnings.warn(f"Can't validate on {val_dataset}, skipping.")
def train_one_epoch(model, optimizer, scheduler, train_loader, logger, args):
device = torch.device(args.device)
for data_blob in logger.log_every(train_loader):
optimizer.zero_grad()
image1, image2, flow_gt, valid_flow_mask = (x.to(device) for x in data_blob)
flow_predictions = model(image1, image2, num_flow_updates=args.num_flow_updates)
loss = utils.sequence_loss(flow_predictions, flow_gt, valid_flow_mask, args.gamma)
metrics, _ = utils.compute_metrics(flow_predictions[-1], flow_gt, valid_flow_mask)
metrics.pop("f1")
logger.update(loss=loss, **metrics)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
scheduler.step()
def main(args):
utils.setup_ddp(args)
args.test_only = args.train_dataset is None
if args.distributed and args.device == "cpu":
raise ValueError("The device must be cuda if we want to run in distributed mode using torchrun")
device = torch.device(args.device)
if args.use_deterministic_algorithms:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
model = torchvision.models.get_model(args.model, weights=args.weights)
if args.distributed:
model = model.to(args.local_rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
model_without_ddp = model.module
else:
model.to(device)
model_without_ddp = model
if args.resume is not None:
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
if args.test_only:
# Set deterministic CUDNN algorithms, since they can affect epe a fair bit.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
evaluate(model, args)
return
print(f"Parameter Count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
train_dataset = get_train_dataset(args.train_dataset, args.dataset_root)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.adamw_eps)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=args.lr,
epochs=args.epochs,
steps_per_epoch=ceil(len(train_dataset) / (args.world_size * args.batch_size)),
pct_start=0.05,
cycle_momentum=False,
anneal_strategy="linear",
)
if args.resume is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
else:
args.start_epoch = 0
torch.backends.cudnn.benchmark = True
model.train()
if args.freeze_batch_norm:
utils.freeze_batch_norm(model.module)
if args.distributed:
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True, drop_last=True)
else:
sampler = torch.utils.data.RandomSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset,
sampler=sampler,
batch_size=args.batch_size,
pin_memory=True,
num_workers=args.workers,
)
logger = utils.MetricLogger()
done = False
for epoch in range(args.start_epoch, args.epochs):
print(f"EPOCH {epoch}")
if args.distributed:
# needed on distributed mode, otherwise the data loading order would be the same for all epochs
sampler.set_epoch(epoch)
train_one_epoch(
model=model,
optimizer=optimizer,
scheduler=scheduler,
train_loader=train_loader,
logger=logger,
args=args,
)
# Note: we don't sync the SmoothedValues across processes, so the printed metrics are just those of rank 0
print(f"Epoch {epoch} done. ", logger)
if not args.distributed or args.rank == 0:
checkpoint = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
torch.save(checkpoint, Path(args.output_dir) / f"{args.name}_{epoch}.pth")
torch.save(checkpoint, Path(args.output_dir) / f"{args.name}.pth")
if epoch % args.val_freq == 0 or done:
evaluate(model, args)
model.train()
if args.freeze_batch_norm:
utils.freeze_batch_norm(model.module)
def get_args_parser(add_help=True):
parser = argparse.ArgumentParser(add_help=add_help, description="Train or evaluate an optical-flow model.")
parser.add_argument(
"--name",
default="raft",
type=str,
help="The name of the experiment - determines the name of the files where weights are saved.",
)
parser.add_argument("--output-dir", default=".", type=str, help="Output dir where checkpoints will be stored.")
parser.add_argument(
"--resume",
type=str,
help="A path to previously saved weights. Used to re-start training from, or evaluate a pre-saved model.",
)
parser.add_argument("--workers", type=int, default=12, help="Number of workers for the data loading part.")
parser.add_argument(
"--train-dataset",
type=str,
help="The dataset to use for training. If not passed, only validation is performed (and you probably want to pass --resume).",
)
parser.add_argument("--val-dataset", type=str, nargs="+", help="The dataset(s) to use for validation.")
parser.add_argument("--val-freq", type=int, default=2, help="Validate every X epochs")
parser.add_argument("--epochs", type=int, default=20, help="The total number of epochs to train.")
parser.add_argument("--batch-size", type=int, default=2)
parser.add_argument("--lr", type=float, default=0.00002, help="Learning rate for AdamW optimizer")
parser.add_argument("--weight-decay", type=float, default=0.00005, help="Weight decay for AdamW optimizer")
parser.add_argument("--adamw-eps", type=float, default=1e-8, help="eps value for AdamW optimizer")
parser.add_argument(
"--freeze-batch-norm", action="store_true", help="Set BatchNorm modules of the model in eval mode."
)
parser.add_argument(
"--model", type=str, default="raft_large", help="The name of the model to use - either raft_large or raft_small"
)
# TODO: resume and weights should be in an exclusive arg group
parser.add_argument(
"--num_flow_updates",
type=int,
default=12,
help="number of updates (or 'iters') in the update operator of the model.",
)
parser.add_argument("--gamma", type=float, default=0.8, help="exponential weighting for loss. Must be < 1.")
parser.add_argument("--dist-url", default="env://", help="URL used to set up distributed training")
parser.add_argument(
"--dataset-root",
help="Root folder where the datasets are stored. Will be passed as the 'root' parameter of the datasets.",
required=True,
)
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load.")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu, Default: cuda)")
parser.add_argument(
"--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
return parser
if __name__ == "__main__":
args = get_args_parser().parse_args()
Path(args.output_dir).mkdir(exist_ok=True)
main(args)
|