1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import datetime
import os
import time
from collections import defaultdict, deque
import torch
import torch.distributed as dist
import torch.nn.functional as F
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt="{median:.4f} ({global_avg:.4f})"):
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = reduce_across_processes([self.count, self.total])
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
if not isinstance(v, (float, int)):
raise TypeError(
f"This method expects the value of the input arguments to be of type float or int, instead got {type(v)}"
)
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, **kwargs):
self.meters[name] = SmoothedValue(**kwargs)
def log_every(self, iterable, print_freq=5, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if print_freq is not None and i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str}")
def compute_metrics(flow_pred, flow_gt, valid_flow_mask=None):
epe = ((flow_pred - flow_gt) ** 2).sum(dim=1).sqrt()
flow_norm = (flow_gt**2).sum(dim=1).sqrt()
if valid_flow_mask is not None:
epe = epe[valid_flow_mask]
flow_norm = flow_norm[valid_flow_mask]
relative_epe = epe / flow_norm
metrics = {
"epe": epe.mean().item(),
"1px": (epe < 1).float().mean().item(),
"3px": (epe < 3).float().mean().item(),
"5px": (epe < 5).float().mean().item(),
"f1": ((epe > 3) & (relative_epe > 0.05)).float().mean().item() * 100,
}
return metrics, epe.numel()
def sequence_loss(flow_preds, flow_gt, valid_flow_mask, gamma=0.8, max_flow=400):
"""Loss function defined over sequence of flow predictions"""
if gamma > 1:
raise ValueError(f"Gamma should be < 1, got {gamma}.")
# exlude invalid pixels and extremely large diplacements
flow_norm = torch.sum(flow_gt**2, dim=1).sqrt()
valid_flow_mask = valid_flow_mask & (flow_norm < max_flow)
valid_flow_mask = valid_flow_mask[:, None, :, :]
flow_preds = torch.stack(flow_preds) # shape = (num_flow_updates, batch_size, 2, H, W)
abs_diff = (flow_preds - flow_gt).abs()
abs_diff = (abs_diff * valid_flow_mask).mean(axis=(1, 2, 3, 4))
num_predictions = flow_preds.shape[0]
weights = gamma ** torch.arange(num_predictions - 1, -1, -1).to(flow_gt.device)
flow_loss = (abs_diff * weights).sum()
return flow_loss
class InputPadder:
"""Pads images such that dimensions are divisible by 8"""
# TODO: Ideally, this should be part of the eval transforms preset, instead
# of being part of the validation code. It's not obvious what a good
# solution would be, because we need to unpad the predicted flows according
# to the input images' size, and in some datasets (Kitti) images can have
# variable sizes.
def __init__(self, dims, mode="sintel"):
self.ht, self.wd = dims[-2:]
pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
if mode == "sintel":
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2]
else:
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht]
def pad(self, *inputs):
return [F.pad(x, self._pad, mode="replicate") for x in inputs]
def unpad(self, x):
ht, wd = x.shape[-2:]
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
return x[..., c[0] : c[1], c[2] : c[3]]
def _redefine_print(is_main):
"""disables printing when not in main process"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_main or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def setup_ddp(args):
# Set the local_rank, rank, and world_size values as args fields
# This is done differently depending on how we're running the script. We
# currently support either torchrun or the custom run_with_submitit.py
# If you're confused (like I was), this might help a bit
# https://discuss.pytorch.org/t/what-is-the-difference-between-rank-and-local-rank/61940/2
if all(key in os.environ for key in ("LOCAL_RANK", "RANK", "WORLD_SIZE")):
# if we're here, the script was called with torchrun. Otherwise
# these args will be set already by the run_with_submitit script
args.local_rank = int(os.environ["LOCAL_RANK"])
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
elif "gpu" in args:
# if we're here, the script was called by run_with_submitit.py
args.local_rank = args.gpu
else:
print("Not using distributed mode!")
args.distributed = False
args.world_size = 1
return
args.distributed = True
_redefine_print(is_main=(args.rank == 0))
torch.cuda.set_device(args.local_rank)
dist.init_process_group(
backend="nccl",
rank=args.rank,
world_size=args.world_size,
init_method=args.dist_url,
)
torch.distributed.barrier()
def reduce_across_processes(val):
t = torch.tensor(val, device="cuda")
dist.barrier()
dist.all_reduce(t)
return t
def freeze_batch_norm(model):
for m in model.modules():
if isinstance(m, torch.nn.BatchNorm2d):
m.eval()
|