1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
#include <gtest/gtest.h>
#include <torch/script.h>
#include <torch/torch.h>
// FIXME: the include path differs from OSS due to the extra csrc
#include <torchvision/csrc/ops/nms.h>
TEST(test_custom_operators, nms) {
// make sure that the torchvision ops are visible to the jit interpreter
auto& ops = torch::jit::getAllOperatorsFor(torch::jit::Symbol::fromQualString("torchvision::nms"));
ASSERT_EQ(ops.size(), 1);
auto& op = ops.front();
ASSERT_EQ(op->schema().name(), "torchvision::nms");
torch::jit::Stack stack;
at::Tensor boxes = at::rand({50, 4}), scores = at::rand({50});
double thresh = 0.7;
torch::jit::push(stack, boxes, scores, thresh);
op->getOperation()(stack);
at::Tensor output_jit;
torch::jit::pop(stack, output_jit);
at::Tensor output = vision::ops::nms(boxes, scores, thresh);
ASSERT_TRUE(output_jit.allclose(output));
}
TEST(test_custom_operators, roi_align_visible) {
// make sure that the torchvision ops are visible to the jit interpreter even if
// not explicitly included
auto& ops = torch::jit::getAllOperatorsFor(torch::jit::Symbol::fromQualString("torchvision::roi_align"));
ASSERT_EQ(ops.size(), 1);
auto& op = ops.front();
ASSERT_EQ(op->schema().name(), "torchvision::roi_align");
torch::jit::Stack stack;
float roi_data[] = {
0., 0., 0., 5., 5.,
0., 5., 5., 10., 10.
};
at::Tensor input = at::rand({1, 2, 10, 10}), rois = at::from_blob(roi_data, {2, 5});
double spatial_scale = 1.0;
int64_t pooled_height = 3, pooled_width = 3, sampling_ratio = -1;
bool aligned = true;
torch::jit::push(stack, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned);
op->getOperation()(stack);
at::Tensor output_jit;
torch::jit::pop(stack, output_jit);
ASSERT_EQ(output_jit.sizes()[0], 2);
ASSERT_EQ(output_jit.sizes()[1], 2);
ASSERT_EQ(output_jit.sizes()[2], 3);
ASSERT_EQ(output_jit.sizes()[3], 3);
}
|