File: test_datasets_download.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (493 lines) | stat: -rw-r--r-- 14,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import contextlib
import itertools
import tempfile
import time
import unittest.mock
import warnings
from datetime import datetime
from distutils import dir_util
from os import path
from urllib.error import HTTPError, URLError
from urllib.parse import urlparse
from urllib.request import Request, urlopen

import pytest
from torchvision import datasets
from torchvision.datasets.utils import (
    _get_redirect_url,
    check_integrity,
    download_file_from_google_drive,
    download_url,
    USER_AGENT,
)


def limit_requests_per_time(min_secs_between_requests=2.0):
    last_requests = {}

    def outer_wrapper(fn):
        def inner_wrapper(request, *args, **kwargs):
            url = request.full_url if isinstance(request, Request) else request

            netloc = urlparse(url).netloc
            last_request = last_requests.get(netloc)
            if last_request is not None:
                elapsed_secs = (datetime.now() - last_request).total_seconds()
                delta = min_secs_between_requests - elapsed_secs
                if delta > 0:
                    time.sleep(delta)

            response = fn(request, *args, **kwargs)
            last_requests[netloc] = datetime.now()

            return response

        return inner_wrapper

    return outer_wrapper


urlopen = limit_requests_per_time()(urlopen)


def resolve_redirects(max_hops=3):
    def outer_wrapper(fn):
        def inner_wrapper(request, *args, **kwargs):
            initial_url = request.full_url if isinstance(request, Request) else request
            url = _get_redirect_url(initial_url, max_hops=max_hops)

            if url == initial_url:
                return fn(request, *args, **kwargs)

            warnings.warn(f"The URL {initial_url} ultimately redirects to {url}.")

            if not isinstance(request, Request):
                return fn(url, *args, **kwargs)

            request_attrs = {
                attr: getattr(request, attr) for attr in ("data", "headers", "origin_req_host", "unverifiable")
            }
            # the 'method' attribute does only exist if the request was created with it
            if hasattr(request, "method"):
                request_attrs["method"] = request.method

            return fn(Request(url, **request_attrs), *args, **kwargs)

        return inner_wrapper

    return outer_wrapper


urlopen = resolve_redirects()(urlopen)


@contextlib.contextmanager
def log_download_attempts(
    urls_and_md5s=None,
    file="utils",
    patch=True,
    mock_auxiliaries=None,
):
    def add_mock(stack, name, file, **kwargs):
        try:
            return stack.enter_context(unittest.mock.patch(f"torchvision.datasets.{file}.{name}", **kwargs))
        except AttributeError as error:
            if file != "utils":
                return add_mock(stack, name, "utils", **kwargs)
            else:
                raise pytest.UsageError from error

    if urls_and_md5s is None:
        urls_and_md5s = set()
    if mock_auxiliaries is None:
        mock_auxiliaries = patch

    with contextlib.ExitStack() as stack:
        url_mock = add_mock(stack, "download_url", file, wraps=None if patch else download_url)
        google_drive_mock = add_mock(
            stack, "download_file_from_google_drive", file, wraps=None if patch else download_file_from_google_drive
        )

        if mock_auxiliaries:
            add_mock(stack, "extract_archive", file)

        try:
            yield urls_and_md5s
        finally:
            for args, kwargs in url_mock.call_args_list:
                url = args[0]
                md5 = args[-1] if len(args) == 4 else kwargs.get("md5")
                urls_and_md5s.add((url, md5))

            for args, kwargs in google_drive_mock.call_args_list:
                id = args[0]
                url = f"https://drive.google.com/file/d/{id}"
                md5 = args[3] if len(args) == 4 else kwargs.get("md5")
                urls_and_md5s.add((url, md5))


def retry(fn, times=1, wait=5.0):
    msgs = []
    for _ in range(times + 1):
        try:
            return fn()
        except AssertionError as error:
            msgs.append(str(error))
            time.sleep(wait)
    else:
        raise AssertionError(
            "\n".join(
                (
                    f"Assertion failed {times + 1} times with {wait:.1f} seconds intermediate wait time.\n",
                    *(f"{idx}: {error}" for idx, error in enumerate(msgs, 1)),
                )
            )
        )


@contextlib.contextmanager
def assert_server_response_ok():
    try:
        yield
    except URLError as error:
        raise AssertionError("The request timed out.") from error
    except HTTPError as error:
        raise AssertionError(f"The server returned {error.code}: {error.reason}.") from error
    except RecursionError as error:
        raise AssertionError(str(error)) from error


def assert_url_is_accessible(url, timeout=5.0):
    request = Request(url, headers={"User-Agent": USER_AGENT}, method="HEAD")
    with assert_server_response_ok():
        urlopen(request, timeout=timeout)


def assert_file_downloads_correctly(url, md5, tmpdir, timeout=5.0):
    file = path.join(tmpdir, path.basename(url))
    with assert_server_response_ok():
        with open(file, "wb") as fh:
            request = Request(url, headers={"User-Agent": USER_AGENT})
            response = urlopen(request, timeout=timeout)
            fh.write(response.read())

    assert check_integrity(file, md5=md5), "The MD5 checksums mismatch"


class DownloadConfig:
    def __init__(self, url, md5=None, id=None):
        self.url = url
        self.md5 = md5
        self.id = id or url

    def __repr__(self) -> str:
        return self.id


def make_download_configs(urls_and_md5s, name=None):
    return [
        DownloadConfig(url, md5=md5, id=f"{name}, {url}" if name is not None else None) for url, md5 in urls_and_md5s
    ]


def collect_download_configs(dataset_loader, name=None, **kwargs):
    urls_and_md5s = set()
    try:
        with log_download_attempts(urls_and_md5s=urls_and_md5s, **kwargs):
            dataset = dataset_loader()
    except Exception:
        dataset = None

    if name is None and dataset is not None:
        name = type(dataset).__name__

    return make_download_configs(urls_and_md5s, name)


# This is a workaround since fixtures, such as the built-in tmp_dir, can only be used within a test but not within a
# parametrization. Thus, we use a single root directory for all datasets and remove it when all download tests are run.
ROOT = tempfile.mkdtemp()


@pytest.fixture(scope="module", autouse=True)
def root():
    yield ROOT
    dir_util.remove_tree(ROOT)


def places365():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.Places365(ROOT, split=split, small=small, download=True),
                name=f"Places365, {split}, {'small' if small else 'large'}",
                file="places365",
            )
            for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True))
        ]
    )


def caltech101():
    return collect_download_configs(lambda: datasets.Caltech101(ROOT, download=True), name="Caltech101")


def caltech256():
    return collect_download_configs(lambda: datasets.Caltech256(ROOT, download=True), name="Caltech256")


def cifar10():
    return collect_download_configs(lambda: datasets.CIFAR10(ROOT, download=True), name="CIFAR10")


def cifar100():
    return collect_download_configs(lambda: datasets.CIFAR100(ROOT, download=True), name="CIFAR100")


def voc():
    # TODO: Also test the "2007-test" key
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.VOCSegmentation(ROOT, year=year, download=True),
                name=f"VOC, {year}",
                file="voc",
            )
            for year in ("2007", "2008", "2009", "2010", "2011", "2012")
        ]
    )


def mnist():
    with unittest.mock.patch.object(datasets.MNIST, "mirrors", datasets.MNIST.mirrors[-1:]):
        return collect_download_configs(lambda: datasets.MNIST(ROOT, download=True), name="MNIST")


def fashion_mnist():
    return collect_download_configs(lambda: datasets.FashionMNIST(ROOT, download=True), name="FashionMNIST")


def kmnist():
    return collect_download_configs(lambda: datasets.KMNIST(ROOT, download=True), name="KMNIST")


def emnist():
    # the 'split' argument can be any valid one, since everything is downloaded anyway
    return collect_download_configs(lambda: datasets.EMNIST(ROOT, split="byclass", download=True), name="EMNIST")


def qmnist():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.QMNIST(ROOT, what=what, download=True),
                name=f"QMNIST, {what}",
                file="mnist",
            )
            for what in ("train", "test", "nist")
        ]
    )


def omniglot():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.Omniglot(ROOT, background=background, download=True),
                name=f"Omniglot, {'background' if background else 'evaluation'}",
            )
            for background in (True, False)
        ]
    )


def phototour():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.PhotoTour(ROOT, name=name, download=True),
                name=f"PhotoTour, {name}",
                file="phototour",
            )
            # The names postfixed with '_harris' point to the domain 'matthewalunbrown.com'. For some reason all
            # requests timeout from within CI. They are disabled until this is resolved.
            for name in ("notredame", "yosemite", "liberty")  # "notredame_harris", "yosemite_harris", "liberty_harris"
        ]
    )


def sbdataset():
    return collect_download_configs(
        lambda: datasets.SBDataset(ROOT, download=True),
        name="SBDataset",
        file="voc",
    )


def sbu():
    return collect_download_configs(
        lambda: datasets.SBU(ROOT, download=True),
        name="SBU",
        file="sbu",
    )


def semeion():
    return collect_download_configs(
        lambda: datasets.SEMEION(ROOT, download=True),
        name="SEMEION",
        file="semeion",
    )


def stl10():
    return collect_download_configs(
        lambda: datasets.STL10(ROOT, download=True),
        name="STL10",
    )


def svhn():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.SVHN(ROOT, split=split, download=True),
                name=f"SVHN, {split}",
                file="svhn",
            )
            for split in ("train", "test", "extra")
        ]
    )


def usps():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.USPS(ROOT, train=train, download=True),
                name=f"USPS, {'train' if train else 'test'}",
                file="usps",
            )
            for train in (True, False)
        ]
    )


def celeba():
    return collect_download_configs(
        lambda: datasets.CelebA(ROOT, download=True),
        name="CelebA",
        file="celeba",
    )


def widerface():
    return collect_download_configs(
        lambda: datasets.WIDERFace(ROOT, download=True),
        name="WIDERFace",
        file="widerface",
    )


def kinetics():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda: datasets.Kinetics(
                    path.join(ROOT, f"Kinetics{num_classes}"),
                    frames_per_clip=1,
                    num_classes=num_classes,
                    split=split,
                    download=True,
                ),
                name=f"Kinetics, {num_classes}, {split}",
                file="kinetics",
            )
            for num_classes, split in itertools.product(("400", "600", "700"), ("train", "val"))
        ]
    )


def kitti():
    return itertools.chain(
        *[
            collect_download_configs(
                lambda train=train: datasets.Kitti(ROOT, train=train, download=True),
                name=f"Kitti, {'train' if train else 'test'}",
                file="kitti",
            )
            for train in (True, False)
        ]
    )


def make_parametrize_kwargs(download_configs):
    argvalues = []
    ids = []
    for config in download_configs:
        argvalues.append((config.url, config.md5))
        ids.append(config.id)

    return dict(argnames=("url", "md5"), argvalues=argvalues, ids=ids)


@pytest.mark.parametrize(
    **make_parametrize_kwargs(
        itertools.chain(
            caltech101(),
            caltech256(),
            cifar10(),
            cifar100(),
            # The VOC download server is unstable. See https://github.com/pytorch/vision/issues/2953 for details.
            # voc(),
            mnist(),
            fashion_mnist(),
            kmnist(),
            emnist(),
            qmnist(),
            omniglot(),
            phototour(),
            sbdataset(),
            sbu(),
            semeion(),
            stl10(),
            svhn(),
            usps(),
            celeba(),
            widerface(),
            kinetics(),
            kitti(),
        )
    )
)
def test_url_is_accessible(url, md5):
    """
    If you see this test failing, find the offending dataset in the parametrization and move it to
    ``test_url_is_not_accessible`` and link an issue detailing the problem.
    """
    retry(lambda: assert_url_is_accessible(url))


@pytest.mark.parametrize(
    **make_parametrize_kwargs(
        itertools.chain(
            places365(),  # https://github.com/pytorch/vision/issues/6268
        )
    )
)
@pytest.mark.xfail
def test_url_is_not_accessible(url, md5):
    """
    As the name implies, this test is the 'inverse' of ``test_url_is_accessible``. Since the download servers are
    beyond our control, some files might not be accessible for longer stretches of time. Still, we want to know if they
    come back up, or if we need to remove the download functionality of the dataset for good.

    If you see this test failing, find the offending dataset in the parametrization and move it to
    ``test_url_is_accessible``.
    """
    retry(lambda: assert_url_is_accessible(url))


@pytest.mark.parametrize(**make_parametrize_kwargs(itertools.chain()))
def test_file_downloads_correctly(url, md5):
    retry(lambda: assert_file_downloads_correctly(url, md5))