1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
import os
import pytest
import test_models as TM
import torch
from torchvision import models
from torchvision.models._api import get_model_weights, Weights, WeightsEnum
from torchvision.models._utils import handle_legacy_interface
run_if_test_with_extended = pytest.mark.skipif(
os.getenv("PYTORCH_TEST_WITH_EXTENDED", "0") != "1",
reason="Extended tests are disabled by default. Set PYTORCH_TEST_WITH_EXTENDED=1 to run them.",
)
@pytest.mark.parametrize(
"name, model_class",
[
("resnet50", models.ResNet),
("retinanet_resnet50_fpn_v2", models.detection.RetinaNet),
("raft_large", models.optical_flow.RAFT),
("quantized_resnet50", models.quantization.QuantizableResNet),
("lraspp_mobilenet_v3_large", models.segmentation.LRASPP),
("mvit_v1_b", models.video.MViT),
],
)
def test_get_model(name, model_class):
assert isinstance(models.get_model(name), model_class)
@pytest.mark.parametrize(
"name, model_fn",
[
("resnet50", models.resnet50),
("retinanet_resnet50_fpn_v2", models.detection.retinanet_resnet50_fpn_v2),
("raft_large", models.optical_flow.raft_large),
("quantized_resnet50", models.quantization.resnet50),
("lraspp_mobilenet_v3_large", models.segmentation.lraspp_mobilenet_v3_large),
("mvit_v1_b", models.video.mvit_v1_b),
],
)
def test_get_model_builder(name, model_fn):
assert models.get_model_builder(name) == model_fn
@pytest.mark.parametrize(
"name, weight",
[
("resnet50", models.ResNet50_Weights),
("retinanet_resnet50_fpn_v2", models.detection.RetinaNet_ResNet50_FPN_V2_Weights),
("raft_large", models.optical_flow.Raft_Large_Weights),
("quantized_resnet50", models.quantization.ResNet50_QuantizedWeights),
("lraspp_mobilenet_v3_large", models.segmentation.LRASPP_MobileNet_V3_Large_Weights),
("mvit_v1_b", models.video.MViT_V1_B_Weights),
],
)
def test_get_model_weights(name, weight):
assert models.get_model_weights(name) == weight
@pytest.mark.parametrize(
"module", [models, models.detection, models.quantization, models.segmentation, models.video, models.optical_flow]
)
def test_list_models(module):
def get_models_from_module(module):
return [
v.__name__
for k, v in module.__dict__.items()
if callable(v) and k[0].islower() and k[0] != "_" and k not in models._api.__all__
]
a = set(get_models_from_module(module))
b = set(x.replace("quantized_", "") for x in models.list_models(module))
assert len(b) > 0
assert a == b
@pytest.mark.parametrize(
"name, weight",
[
("ResNet50_Weights.IMAGENET1K_V1", models.ResNet50_Weights.IMAGENET1K_V1),
("ResNet50_Weights.DEFAULT", models.ResNet50_Weights.IMAGENET1K_V2),
(
"ResNet50_QuantizedWeights.DEFAULT",
models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2,
),
(
"ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1",
models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1,
),
],
)
def test_get_weight(name, weight):
assert models.get_weight(name) == weight
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
def test_naming_conventions(model_fn):
weights_enum = get_model_weights(model_fn)
assert weights_enum is not None
assert len(weights_enum) == 0 or hasattr(weights_enum, "DEFAULT")
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_schema_meta_validation(model_fn):
# list of all possible supported high-level fields for weights meta-data
permitted_fields = {
"backend",
"categories",
"keypoint_names",
"license",
"_metrics",
"min_size",
"min_temporal_size",
"num_params",
"recipe",
"unquantized",
"_docs",
}
# mandatory fields for each computer vision task
classification_fields = {"categories", ("_metrics", "ImageNet-1K", "acc@1"), ("_metrics", "ImageNet-1K", "acc@5")}
defaults = {
"all": {"_metrics", "min_size", "num_params", "recipe", "_docs"},
"models": classification_fields,
"detection": {"categories", ("_metrics", "COCO-val2017", "box_map")},
"quantization": classification_fields | {"backend", "unquantized"},
"segmentation": {
"categories",
("_metrics", "COCO-val2017-VOC-labels", "miou"),
("_metrics", "COCO-val2017-VOC-labels", "pixel_acc"),
},
"video": {"categories", ("_metrics", "Kinetics-400", "acc@1"), ("_metrics", "Kinetics-400", "acc@5")},
"optical_flow": set(),
}
model_name = model_fn.__name__
module_name = model_fn.__module__.split(".")[-2]
expected_fields = defaults["all"] | defaults[module_name]
weights_enum = get_model_weights(model_fn)
if len(weights_enum) == 0:
pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")
problematic_weights = {}
incorrect_params = []
bad_names = []
for w in weights_enum:
actual_fields = set(w.meta.keys())
actual_fields |= set(
("_metrics", dataset, metric_key)
for dataset in w.meta.get("_metrics", {}).keys()
for metric_key in w.meta.get("_metrics", {}).get(dataset, {}).keys()
)
missing_fields = expected_fields - actual_fields
unsupported_fields = set(w.meta.keys()) - permitted_fields
if missing_fields or unsupported_fields:
problematic_weights[w] = {"missing": missing_fields, "unsupported": unsupported_fields}
if w == weights_enum.DEFAULT:
if module_name == "quantization":
# parameters() count doesn't work well with quantization, so we check against the non-quantized
unquantized_w = w.meta.get("unquantized")
if unquantized_w is not None and w.meta.get("num_params") != unquantized_w.meta.get("num_params"):
incorrect_params.append(w)
else:
if w.meta.get("num_params") != sum(p.numel() for p in model_fn(weights=w).parameters()):
incorrect_params.append(w)
else:
if w.meta.get("num_params") != weights_enum.DEFAULT.meta.get("num_params"):
if w.meta.get("num_params") != sum(p.numel() for p in model_fn(weights=w).parameters()):
incorrect_params.append(w)
if not w.name.isupper():
bad_names.append(w)
assert not problematic_weights
assert not incorrect_params
assert not bad_names
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_transforms_jit(model_fn):
model_name = model_fn.__name__
weights_enum = get_model_weights(model_fn)
if len(weights_enum) == 0:
pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")
defaults = {
"models": {
"input_shape": (1, 3, 224, 224),
},
"detection": {
"input_shape": (3, 300, 300),
},
"quantization": {
"input_shape": (1, 3, 224, 224),
},
"segmentation": {
"input_shape": (1, 3, 520, 520),
},
"video": {
"input_shape": (1, 3, 4, 112, 112),
},
"optical_flow": {
"input_shape": (1, 3, 128, 128),
},
}
module_name = model_fn.__module__.split(".")[-2]
kwargs = {**defaults[module_name], **TM._model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
x = torch.rand(input_shape)
if module_name == "optical_flow":
args = (x, x)
else:
if module_name == "video":
x = x.permute(0, 2, 1, 3, 4)
args = (x,)
problematic_weights = []
for w in weights_enum:
transforms = w.transforms()
try:
TM._check_jit_scriptable(transforms, args)
except Exception:
problematic_weights.append(w)
assert not problematic_weights
# With this filter, every unexpected warning will be turned into an error
@pytest.mark.filterwarnings("error")
class TestHandleLegacyInterface:
class ModelWeights(WeightsEnum):
Sentinel = Weights(url="https://pytorch.org", transforms=lambda x: x, meta=dict())
@pytest.mark.parametrize(
"kwargs",
[
pytest.param(dict(), id="empty"),
pytest.param(dict(weights=None), id="None"),
pytest.param(dict(weights=ModelWeights.Sentinel), id="Weights"),
],
)
def test_no_warn(self, kwargs):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
builder(**kwargs)
@pytest.mark.parametrize("pretrained", (True, False))
def test_pretrained_pos(self, pretrained):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
with pytest.warns(UserWarning, match="positional"):
builder(pretrained)
@pytest.mark.parametrize("pretrained", (True, False))
def test_pretrained_kw(self, pretrained):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
with pytest.warns(UserWarning, match="deprecated"):
builder(pretrained)
@pytest.mark.parametrize("pretrained", (True, False))
@pytest.mark.parametrize("positional", (True, False))
def test_equivalent_behavior_weights(self, pretrained, positional):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
args, kwargs = ((pretrained,), dict()) if positional else ((), dict(pretrained=pretrained))
with pytest.warns(UserWarning, match=f"weights={self.ModelWeights.Sentinel if pretrained else None}"):
builder(*args, **kwargs)
def test_multi_params(self):
weights_params = ("weights", "weights_other")
pretrained_params = [param.replace("weights", "pretrained") for param in weights_params]
@handle_legacy_interface(
**{
weights_param: (pretrained_param, self.ModelWeights.Sentinel)
for weights_param, pretrained_param in zip(weights_params, pretrained_params)
}
)
def builder(*, weights=None, weights_other=None):
pass
for pretrained_param in pretrained_params:
with pytest.warns(UserWarning, match="deprecated"):
builder(**{pretrained_param: True})
def test_default_callable(self):
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: self.ModelWeights.Sentinel if kwargs["flag"] else None,
)
)
def builder(*, weights=None, flag):
pass
with pytest.warns(UserWarning, match="deprecated"):
builder(pretrained=True, flag=True)
with pytest.raises(ValueError, match="weights"):
builder(pretrained=True, flag=False)
@pytest.mark.parametrize(
"model_fn",
[fn for fn in TM.list_model_fns(models) if fn.__name__ not in {"vit_h_14", "regnet_y_128gf"}]
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_pretrained_deprecation(self, model_fn):
with pytest.warns(UserWarning, match="deprecated"):
model_fn(pretrained=True)
|