File: test_extended_models.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (351 lines) | stat: -rw-r--r-- 12,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os

import pytest
import test_models as TM
import torch
from torchvision import models
from torchvision.models._api import get_model_weights, Weights, WeightsEnum
from torchvision.models._utils import handle_legacy_interface


run_if_test_with_extended = pytest.mark.skipif(
    os.getenv("PYTORCH_TEST_WITH_EXTENDED", "0") != "1",
    reason="Extended tests are disabled by default. Set PYTORCH_TEST_WITH_EXTENDED=1 to run them.",
)


@pytest.mark.parametrize(
    "name, model_class",
    [
        ("resnet50", models.ResNet),
        ("retinanet_resnet50_fpn_v2", models.detection.RetinaNet),
        ("raft_large", models.optical_flow.RAFT),
        ("quantized_resnet50", models.quantization.QuantizableResNet),
        ("lraspp_mobilenet_v3_large", models.segmentation.LRASPP),
        ("mvit_v1_b", models.video.MViT),
    ],
)
def test_get_model(name, model_class):
    assert isinstance(models.get_model(name), model_class)


@pytest.mark.parametrize(
    "name, model_fn",
    [
        ("resnet50", models.resnet50),
        ("retinanet_resnet50_fpn_v2", models.detection.retinanet_resnet50_fpn_v2),
        ("raft_large", models.optical_flow.raft_large),
        ("quantized_resnet50", models.quantization.resnet50),
        ("lraspp_mobilenet_v3_large", models.segmentation.lraspp_mobilenet_v3_large),
        ("mvit_v1_b", models.video.mvit_v1_b),
    ],
)
def test_get_model_builder(name, model_fn):
    assert models.get_model_builder(name) == model_fn


@pytest.mark.parametrize(
    "name, weight",
    [
        ("resnet50", models.ResNet50_Weights),
        ("retinanet_resnet50_fpn_v2", models.detection.RetinaNet_ResNet50_FPN_V2_Weights),
        ("raft_large", models.optical_flow.Raft_Large_Weights),
        ("quantized_resnet50", models.quantization.ResNet50_QuantizedWeights),
        ("lraspp_mobilenet_v3_large", models.segmentation.LRASPP_MobileNet_V3_Large_Weights),
        ("mvit_v1_b", models.video.MViT_V1_B_Weights),
    ],
)
def test_get_model_weights(name, weight):
    assert models.get_model_weights(name) == weight


@pytest.mark.parametrize(
    "module", [models, models.detection, models.quantization, models.segmentation, models.video, models.optical_flow]
)
def test_list_models(module):
    def get_models_from_module(module):
        return [
            v.__name__
            for k, v in module.__dict__.items()
            if callable(v) and k[0].islower() and k[0] != "_" and k not in models._api.__all__
        ]

    a = set(get_models_from_module(module))
    b = set(x.replace("quantized_", "") for x in models.list_models(module))

    assert len(b) > 0
    assert a == b


@pytest.mark.parametrize(
    "name, weight",
    [
        ("ResNet50_Weights.IMAGENET1K_V1", models.ResNet50_Weights.IMAGENET1K_V1),
        ("ResNet50_Weights.DEFAULT", models.ResNet50_Weights.IMAGENET1K_V2),
        (
            "ResNet50_QuantizedWeights.DEFAULT",
            models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2,
        ),
        (
            "ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1",
            models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1,
        ),
    ],
)
def test_get_weight(name, weight):
    assert models.get_weight(name) == weight


@pytest.mark.parametrize(
    "model_fn",
    TM.list_model_fns(models)
    + TM.list_model_fns(models.detection)
    + TM.list_model_fns(models.quantization)
    + TM.list_model_fns(models.segmentation)
    + TM.list_model_fns(models.video)
    + TM.list_model_fns(models.optical_flow),
)
def test_naming_conventions(model_fn):
    weights_enum = get_model_weights(model_fn)
    assert weights_enum is not None
    assert len(weights_enum) == 0 or hasattr(weights_enum, "DEFAULT")


@pytest.mark.parametrize(
    "model_fn",
    TM.list_model_fns(models)
    + TM.list_model_fns(models.detection)
    + TM.list_model_fns(models.quantization)
    + TM.list_model_fns(models.segmentation)
    + TM.list_model_fns(models.video)
    + TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_schema_meta_validation(model_fn):
    # list of all possible supported high-level fields for weights meta-data
    permitted_fields = {
        "backend",
        "categories",
        "keypoint_names",
        "license",
        "_metrics",
        "min_size",
        "min_temporal_size",
        "num_params",
        "recipe",
        "unquantized",
        "_docs",
    }
    # mandatory fields for each computer vision task
    classification_fields = {"categories", ("_metrics", "ImageNet-1K", "acc@1"), ("_metrics", "ImageNet-1K", "acc@5")}
    defaults = {
        "all": {"_metrics", "min_size", "num_params", "recipe", "_docs"},
        "models": classification_fields,
        "detection": {"categories", ("_metrics", "COCO-val2017", "box_map")},
        "quantization": classification_fields | {"backend", "unquantized"},
        "segmentation": {
            "categories",
            ("_metrics", "COCO-val2017-VOC-labels", "miou"),
            ("_metrics", "COCO-val2017-VOC-labels", "pixel_acc"),
        },
        "video": {"categories", ("_metrics", "Kinetics-400", "acc@1"), ("_metrics", "Kinetics-400", "acc@5")},
        "optical_flow": set(),
    }
    model_name = model_fn.__name__
    module_name = model_fn.__module__.split(".")[-2]
    expected_fields = defaults["all"] | defaults[module_name]

    weights_enum = get_model_weights(model_fn)
    if len(weights_enum) == 0:
        pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")

    problematic_weights = {}
    incorrect_params = []
    bad_names = []
    for w in weights_enum:
        actual_fields = set(w.meta.keys())
        actual_fields |= set(
            ("_metrics", dataset, metric_key)
            for dataset in w.meta.get("_metrics", {}).keys()
            for metric_key in w.meta.get("_metrics", {}).get(dataset, {}).keys()
        )
        missing_fields = expected_fields - actual_fields
        unsupported_fields = set(w.meta.keys()) - permitted_fields
        if missing_fields or unsupported_fields:
            problematic_weights[w] = {"missing": missing_fields, "unsupported": unsupported_fields}
        if w == weights_enum.DEFAULT:
            if module_name == "quantization":
                # parameters() count doesn't work well with quantization, so we check against the non-quantized
                unquantized_w = w.meta.get("unquantized")
                if unquantized_w is not None and w.meta.get("num_params") != unquantized_w.meta.get("num_params"):
                    incorrect_params.append(w)
            else:
                if w.meta.get("num_params") != sum(p.numel() for p in model_fn(weights=w).parameters()):
                    incorrect_params.append(w)
        else:
            if w.meta.get("num_params") != weights_enum.DEFAULT.meta.get("num_params"):
                if w.meta.get("num_params") != sum(p.numel() for p in model_fn(weights=w).parameters()):
                    incorrect_params.append(w)
        if not w.name.isupper():
            bad_names.append(w)

    assert not problematic_weights
    assert not incorrect_params
    assert not bad_names


@pytest.mark.parametrize(
    "model_fn",
    TM.list_model_fns(models)
    + TM.list_model_fns(models.detection)
    + TM.list_model_fns(models.quantization)
    + TM.list_model_fns(models.segmentation)
    + TM.list_model_fns(models.video)
    + TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_transforms_jit(model_fn):
    model_name = model_fn.__name__
    weights_enum = get_model_weights(model_fn)
    if len(weights_enum) == 0:
        pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")

    defaults = {
        "models": {
            "input_shape": (1, 3, 224, 224),
        },
        "detection": {
            "input_shape": (3, 300, 300),
        },
        "quantization": {
            "input_shape": (1, 3, 224, 224),
        },
        "segmentation": {
            "input_shape": (1, 3, 520, 520),
        },
        "video": {
            "input_shape": (1, 3, 4, 112, 112),
        },
        "optical_flow": {
            "input_shape": (1, 3, 128, 128),
        },
    }
    module_name = model_fn.__module__.split(".")[-2]

    kwargs = {**defaults[module_name], **TM._model_params.get(model_name, {})}
    input_shape = kwargs.pop("input_shape")
    x = torch.rand(input_shape)
    if module_name == "optical_flow":
        args = (x, x)
    else:
        if module_name == "video":
            x = x.permute(0, 2, 1, 3, 4)
        args = (x,)

    problematic_weights = []
    for w in weights_enum:
        transforms = w.transforms()
        try:
            TM._check_jit_scriptable(transforms, args)
        except Exception:
            problematic_weights.append(w)

    assert not problematic_weights


# With this filter, every unexpected warning will be turned into an error
@pytest.mark.filterwarnings("error")
class TestHandleLegacyInterface:
    class ModelWeights(WeightsEnum):
        Sentinel = Weights(url="https://pytorch.org", transforms=lambda x: x, meta=dict())

    @pytest.mark.parametrize(
        "kwargs",
        [
            pytest.param(dict(), id="empty"),
            pytest.param(dict(weights=None), id="None"),
            pytest.param(dict(weights=ModelWeights.Sentinel), id="Weights"),
        ],
    )
    def test_no_warn(self, kwargs):
        @handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
        def builder(*, weights=None):
            pass

        builder(**kwargs)

    @pytest.mark.parametrize("pretrained", (True, False))
    def test_pretrained_pos(self, pretrained):
        @handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
        def builder(*, weights=None):
            pass

        with pytest.warns(UserWarning, match="positional"):
            builder(pretrained)

    @pytest.mark.parametrize("pretrained", (True, False))
    def test_pretrained_kw(self, pretrained):
        @handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
        def builder(*, weights=None):
            pass

        with pytest.warns(UserWarning, match="deprecated"):
            builder(pretrained)

    @pytest.mark.parametrize("pretrained", (True, False))
    @pytest.mark.parametrize("positional", (True, False))
    def test_equivalent_behavior_weights(self, pretrained, positional):
        @handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
        def builder(*, weights=None):
            pass

        args, kwargs = ((pretrained,), dict()) if positional else ((), dict(pretrained=pretrained))
        with pytest.warns(UserWarning, match=f"weights={self.ModelWeights.Sentinel if pretrained else None}"):
            builder(*args, **kwargs)

    def test_multi_params(self):
        weights_params = ("weights", "weights_other")
        pretrained_params = [param.replace("weights", "pretrained") for param in weights_params]

        @handle_legacy_interface(
            **{
                weights_param: (pretrained_param, self.ModelWeights.Sentinel)
                for weights_param, pretrained_param in zip(weights_params, pretrained_params)
            }
        )
        def builder(*, weights=None, weights_other=None):
            pass

        for pretrained_param in pretrained_params:
            with pytest.warns(UserWarning, match="deprecated"):
                builder(**{pretrained_param: True})

    def test_default_callable(self):
        @handle_legacy_interface(
            weights=(
                "pretrained",
                lambda kwargs: self.ModelWeights.Sentinel if kwargs["flag"] else None,
            )
        )
        def builder(*, weights=None, flag):
            pass

        with pytest.warns(UserWarning, match="deprecated"):
            builder(pretrained=True, flag=True)

        with pytest.raises(ValueError, match="weights"):
            builder(pretrained=True, flag=False)

    @pytest.mark.parametrize(
        "model_fn",
        [fn for fn in TM.list_model_fns(models) if fn.__name__ not in {"vit_h_14", "regnet_y_128gf"}]
        + TM.list_model_fns(models.detection)
        + TM.list_model_fns(models.quantization)
        + TM.list_model_fns(models.segmentation)
        + TM.list_model_fns(models.video)
        + TM.list_model_fns(models.optical_flow),
    )
    @run_if_test_with_extended
    def test_pretrained_deprecation(self, model_fn):
        with pytest.warns(UserWarning, match="deprecated"):
            model_fn(pretrained=True)