1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
import glob
import io
import os
import sys
from pathlib import Path
import numpy as np
import pytest
import torch
import torchvision.transforms.functional as F
from common_utils import assert_equal, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image
from torchvision.io.image import (
_read_png_16,
decode_image,
decode_jpeg,
decode_png,
encode_jpeg,
encode_png,
ImageReadMode,
read_file,
read_image,
write_file,
write_jpeg,
write_png,
)
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
def _get_safe_image_name(name):
# Used when we need to change the pytest "id" for an "image path" parameter.
# If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
# and this creates issues when the test is running in a different machine than where it was collected
# (typically, in fb internal infra)
return name.split(os.path.sep)[-1]
def get_images(directory, img_ext):
assert os.path.isdir(directory)
image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
for path in image_paths:
if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
yield path
def pil_read_image(img_path):
with Image.open(img_path) as img:
return torch.from_numpy(np.array(img))
def normalize_dimensions(img_pil):
if len(img_pil.shape) == 3:
img_pil = img_pil.permute(2, 0, 1)
else:
img_pil = img_pil.unsqueeze(0)
return img_pil
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("RGB", ImageReadMode.RGB),
],
)
def test_decode_jpeg(img_path, pil_mode, mode):
with Image.open(img_path) as img:
is_cmyk = img.mode == "CMYK"
if pil_mode is not None:
if is_cmyk:
# libjpeg does not support the conversion
pytest.xfail("Decoding a CMYK jpeg isn't supported")
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
if is_cmyk:
# flip the colors to match libjpeg
img_pil = 255 - img_pil
img_pil = normalize_dimensions(img_pil)
data = read_file(img_path)
img_ljpeg = decode_image(data, mode=mode)
# Permit a small variation on pixel values to account for implementation
# differences between Pillow and LibJPEG.
abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
assert abs_mean_diff < 2
def test_decode_jpeg_errors():
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(torch.empty((100,), dtype=torch.float16))
with pytest.raises(RuntimeError, match="Not a JPEG file"):
decode_jpeg(torch.empty((100), dtype=torch.uint8))
def test_decode_bad_huffman_images():
# sanity check: make sure we can decode the bad Huffman encoding
bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
decode_jpeg(bad_huff)
@pytest.mark.parametrize(
"img_path",
[
pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
],
)
def test_damaged_corrupt_images(img_path):
# Truncated images should raise an exception
data = read_file(img_path)
if "corrupt34" in img_path:
match_message = "Image is incomplete or truncated"
else:
match_message = "Unsupported marker type"
with pytest.raises(RuntimeError, match=match_message):
decode_jpeg(data)
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("LA", ImageReadMode.GRAY_ALPHA),
("RGB", ImageReadMode.RGB),
("RGBA", ImageReadMode.RGB_ALPHA),
],
)
def test_decode_png(img_path, pil_mode, mode):
with Image.open(img_path) as img:
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
img_pil = normalize_dimensions(img_pil)
if img_path.endswith("16.png"):
# 16 bits image decoding is supported, but only as a private API
# FIXME: see https://github.com/pytorch/vision/issues/4731 for potential solutions to making it public
with pytest.raises(RuntimeError, match="At most 8-bit PNG images are supported"):
data = read_file(img_path)
img_lpng = decode_image(data, mode=mode)
img_lpng = _read_png_16(img_path, mode=mode)
assert img_lpng.dtype == torch.int32
# PIL converts 16 bits pngs in uint8
img_lpng = torch.round(img_lpng / (2**16 - 1) * 255).to(torch.uint8)
else:
data = read_file(img_path)
img_lpng = decode_image(data, mode=mode)
tol = 0 if pil_mode is None else 1
if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
# Avoid checking the transparency channel until
# https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
# is fixed.
# TODO: remove once fix is released in PIL. Should be > 8.3.1.
img_lpng, img_pil = img_lpng[0], img_pil[0]
torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)
def test_decode_png_errors():
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_png(torch.empty((), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Content is not png"):
decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
def test_encode_png(img_path):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
png_buf = encode_png(img_pil, compression_level=6)
rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
rec_img = torch.from_numpy(np.array(rec_img))
rec_img = rec_img.permute(2, 0, 1)
assert_equal(img_pil, rec_img)
def test_encode_png_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_png(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
def test_write_png(img_path, tmpdir):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
filename, _ = os.path.splitext(os.path.basename(img_path))
torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
write_png(img_pil, torch_png, compression_level=6)
saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
saved_image = saved_image.permute(2, 0, 1)
assert_equal(img_pil, saved_image)
def test_read_file(tmpdir):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
data = read_file(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
read_file("tst")
def test_read_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
data = read_file(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
def test_write_file(tmpdir):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write_file(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
def test_write_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write_file(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
def test_read_1_bit_png(shape, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path)
img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
assert_equal(img1, img2)
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
@pytest.mark.parametrize(
"mode",
[
ImageReadMode.UNCHANGED,
ImageReadMode.GRAY,
],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path, mode)
img2 = read_image(image_path, mode)
assert_equal(img1, img2)
def test_read_interlaced_png():
imgs = list(get_images(INTERLACED_PNG, ".png"))
with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
assert not (im1.info.get("interlace") is im2.info.get("interlace"))
img1 = read_image(imgs[0])
img2 = read_image(imgs[1])
assert_equal(img1, img2)
@needs_cuda
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_jpeg_cuda(mode, img_path, scripted):
if "cmyk" in img_path:
pytest.xfail("Decoding a CMYK jpeg isn't supported")
data = read_file(img_path)
img = decode_image(data, mode=mode)
f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
img_nvjpeg = f(data, mode=mode, device="cuda")
# Some difference expected between jpeg implementations
assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2
@needs_cuda
@pytest.mark.parametrize("cuda_device", ("cuda", "cuda:0", torch.device("cuda")))
def test_decode_jpeg_cuda_device_param(cuda_device):
"""Make sure we can pass a string or a torch.device as device param"""
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_file(path)
decode_jpeg(data, device=cuda_device)
@needs_cuda
def test_decode_jpeg_cuda_errors():
data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(data.reshape(-1, 1), device="cuda")
with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
decode_jpeg(data.to("cuda"), device="cuda")
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(data.to(torch.float), device="cuda")
with pytest.raises(RuntimeError, match="Expected a cuda device"):
torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, "cpu")
def test_encode_jpeg_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))
def _collect_if(cond):
# TODO: remove this once test_encode_jpeg_reference and test_write_jpeg_reference
# are removed
def _inner(test_func):
if cond:
return test_func
else:
return pytest.mark.dont_collect(test_func)
return _inner
@_collect_if(cond=False)
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_encode_jpeg_reference(img_path):
# This test is *wrong*.
# It compares a torchvision-encoded jpeg with a PIL-encoded jpeg (the reference), but it
# starts encoding the torchvision version from an image that comes from
# decode_jpeg, which can yield different results from pil.decode (see
# test_decode... which uses a high tolerance).
# Instead, we should start encoding from the exact same decoded image, for a
# valid comparison. This is done in test_encode_jpeg, but unfortunately
# these more correct tests fail on windows (probably because of a difference
# in libjpeg) between torchvision and PIL.
# FIXME: make the correct tests pass on windows and remove this.
dirname = os.path.dirname(img_path)
filename, _ = os.path.splitext(os.path.basename(img_path))
write_folder = os.path.join(dirname, "jpeg_write")
expected_file = os.path.join(write_folder, f"{filename}_pil.jpg")
img = decode_jpeg(read_file(img_path))
with open(expected_file, "rb") as f:
pil_bytes = f.read()
pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8)
for src_img in [img, img.contiguous()]:
# PIL sets jpeg quality to 75 by default
jpeg_bytes = encode_jpeg(src_img, quality=75)
assert_equal(jpeg_bytes, pil_bytes)
@_collect_if(cond=False)
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_write_jpeg_reference(img_path, tmpdir):
# FIXME: Remove this eventually, see test_encode_jpeg_reference
data = read_file(img_path)
img = decode_jpeg(data)
basedir = os.path.dirname(img_path)
filename, _ = os.path.splitext(os.path.basename(img_path))
torch_jpeg = os.path.join(tmpdir, f"{filename}_torch.jpg")
pil_jpeg = os.path.join(basedir, "jpeg_write", f"{filename}_pil.jpg")
write_jpeg(img, torch_jpeg, quality=75)
with open(torch_jpeg, "rb") as f:
torch_bytes = f.read()
with open(pil_jpeg, "rb") as f:
pil_bytes = f.read()
assert_equal(torch_bytes, pil_bytes)
# TODO: Remove the skip. See https://github.com/pytorch/vision/issues/5162.
@pytest.mark.skip("this test fails because PIL uses libjpeg-turbo")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_encode_jpeg(img_path):
img = read_image(img_path)
pil_img = F.to_pil_image(img)
buf = io.BytesIO()
pil_img.save(buf, format="JPEG", quality=75)
encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)
for src_img in [img, img.contiguous()]:
encoded_jpeg_torch = encode_jpeg(src_img, quality=75)
assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)
# TODO: Remove the skip. See https://github.com/pytorch/vision/issues/5162.
@pytest.mark.skip("this test fails because PIL uses libjpeg-turbo")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_write_jpeg(img_path, tmpdir):
tmpdir = Path(tmpdir)
img = read_image(img_path)
pil_img = F.to_pil_image(img)
torch_jpeg = str(tmpdir / "torch.jpg")
pil_jpeg = str(tmpdir / "pil.jpg")
write_jpeg(img, torch_jpeg, quality=75)
pil_img.save(pil_jpeg, quality=75)
with open(torch_jpeg, "rb") as f:
torch_bytes = f.read()
with open(pil_jpeg, "rb") as f:
pil_bytes = f.read()
assert_equal(torch_bytes, pil_bytes)
if __name__ == "__main__":
pytest.main([__file__])
|