File: test_image.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (531 lines) | stat: -rw-r--r-- 18,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import glob
import io
import os
import sys
from pathlib import Path

import numpy as np
import pytest
import torch
import torchvision.transforms.functional as F
from common_utils import assert_equal, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image
from torchvision.io.image import (
    _read_png_16,
    decode_image,
    decode_jpeg,
    decode_png,
    encode_jpeg,
    encode_png,
    ImageReadMode,
    read_file,
    read_image,
    write_file,
    write_jpeg,
    write_png,
)

IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))


def _get_safe_image_name(name):
    # Used when we need to change the pytest "id" for an "image path" parameter.
    # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
    # and this creates issues when the test is running in a different machine than where it was collected
    # (typically, in fb internal infra)
    return name.split(os.path.sep)[-1]


def get_images(directory, img_ext):
    assert os.path.isdir(directory)
    image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
    for path in image_paths:
        if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
            yield path


def pil_read_image(img_path):
    with Image.open(img_path) as img:
        return torch.from_numpy(np.array(img))


def normalize_dimensions(img_pil):
    if len(img_pil.shape) == 3:
        img_pil = img_pil.permute(2, 0, 1)
    else:
        img_pil = img_pil.unsqueeze(0)
    return img_pil


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("RGB", ImageReadMode.RGB),
    ],
)
def test_decode_jpeg(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        is_cmyk = img.mode == "CMYK"
        if pil_mode is not None:
            if is_cmyk:
                # libjpeg does not support the conversion
                pytest.xfail("Decoding a CMYK jpeg isn't supported")
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))
        if is_cmyk:
            # flip the colors to match libjpeg
            img_pil = 255 - img_pil

    img_pil = normalize_dimensions(img_pil)
    data = read_file(img_path)
    img_ljpeg = decode_image(data, mode=mode)

    # Permit a small variation on pixel values to account for implementation
    # differences between Pillow and LibJPEG.
    abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
    assert abs_mean_diff < 2


def test_decode_jpeg_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(torch.empty((100,), dtype=torch.float16))

    with pytest.raises(RuntimeError, match="Not a JPEG file"):
        decode_jpeg(torch.empty((100), dtype=torch.uint8))


def test_decode_bad_huffman_images():
    # sanity check: make sure we can decode the bad Huffman encoding
    bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
    decode_jpeg(bad_huff)


@pytest.mark.parametrize(
    "img_path",
    [
        pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
        for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
    ],
)
def test_damaged_corrupt_images(img_path):
    # Truncated images should raise an exception
    data = read_file(img_path)
    if "corrupt34" in img_path:
        match_message = "Image is incomplete or truncated"
    else:
        match_message = "Unsupported marker type"
    with pytest.raises(RuntimeError, match=match_message):
        decode_jpeg(data)


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("LA", ImageReadMode.GRAY_ALPHA),
        ("RGB", ImageReadMode.RGB),
        ("RGBA", ImageReadMode.RGB_ALPHA),
    ],
)
def test_decode_png(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))

    img_pil = normalize_dimensions(img_pil)

    if img_path.endswith("16.png"):
        # 16 bits image decoding is supported, but only as a private API
        # FIXME: see https://github.com/pytorch/vision/issues/4731 for potential solutions to making it public
        with pytest.raises(RuntimeError, match="At most 8-bit PNG images are supported"):
            data = read_file(img_path)
            img_lpng = decode_image(data, mode=mode)

        img_lpng = _read_png_16(img_path, mode=mode)
        assert img_lpng.dtype == torch.int32
        # PIL converts 16 bits pngs in uint8
        img_lpng = torch.round(img_lpng / (2**16 - 1) * 255).to(torch.uint8)
    else:
        data = read_file(img_path)
        img_lpng = decode_image(data, mode=mode)

    tol = 0 if pil_mode is None else 1

    if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
        # Avoid checking the transparency channel until
        # https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
        # is fixed.
        # TODO: remove once fix is released in PIL. Should be > 8.3.1.
        img_lpng, img_pil = img_lpng[0], img_pil[0]

    torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)


def test_decode_png_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_png(torch.empty((), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Content is not png"):
        decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
        decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
def test_encode_png(img_path):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)
    png_buf = encode_png(img_pil, compression_level=6)

    rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
    rec_img = torch.from_numpy(np.array(rec_img))
    rec_img = rec_img.permute(2, 0, 1)

    assert_equal(img_pil, rec_img)


def test_encode_png_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
def test_write_png(img_path, tmpdir):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)

    filename, _ = os.path.splitext(os.path.basename(img_path))
    torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
    write_png(img_pil, torch_png, compression_level=6)
    saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
    saved_image = saved_image.permute(2, 0, 1)

    assert_equal(img_pil, saved_image)


def test_read_file(tmpdir):
    fname, content = "test1.bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    with open(fpath, "wb") as f:
        f.write(content)

    data = read_file(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)

    with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
        read_file("tst")


def test_read_file_non_ascii(tmpdir):
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    with open(fpath, "wb") as f:
        f.write(content)

    data = read_file(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)


def test_write_file(tmpdir):
    fname, content = "test1.bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write_file(fpath, content_tensor)

    with open(fpath, "rb") as f:
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content


def test_write_file_non_ascii(tmpdir):
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write_file(fpath, content_tensor)

    with open(fpath, "rb") as f:
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content


@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
def test_read_1_bit_png(shape, tmpdir):
    np_rng = np.random.RandomState(0)
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path)
    img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
    assert_equal(img1, img2)


@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
@pytest.mark.parametrize(
    "mode",
    [
        ImageReadMode.UNCHANGED,
        ImageReadMode.GRAY,
    ],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
    np_rng = np.random.RandomState(0)
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path, mode)
    img2 = read_image(image_path, mode)
    assert_equal(img1, img2)


def test_read_interlaced_png():
    imgs = list(get_images(INTERLACED_PNG, ".png"))
    with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
        assert not (im1.info.get("interlace") is im2.info.get("interlace"))
    img1 = read_image(imgs[0])
    img2 = read_image(imgs[1])
    assert_equal(img1, img2)


@needs_cuda
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_jpeg_cuda(mode, img_path, scripted):
    if "cmyk" in img_path:
        pytest.xfail("Decoding a CMYK jpeg isn't supported")

    data = read_file(img_path)
    img = decode_image(data, mode=mode)
    f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
    img_nvjpeg = f(data, mode=mode, device="cuda")

    # Some difference expected between jpeg implementations
    assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2


@needs_cuda
@pytest.mark.parametrize("cuda_device", ("cuda", "cuda:0", torch.device("cuda")))
def test_decode_jpeg_cuda_device_param(cuda_device):
    """Make sure we can pass a string or a torch.device as device param"""
    path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
    data = read_file(path)
    decode_jpeg(data, device=cuda_device)


@needs_cuda
def test_decode_jpeg_cuda_errors():
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(data.reshape(-1, 1), device="cuda")
    with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
        decode_jpeg(data.to("cuda"), device="cuda")
    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(data.to(torch.float), device="cuda")
    with pytest.raises(RuntimeError, match="Expected a cuda device"):
        torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, "cpu")


def test_encode_jpeg_errors():

    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)

    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))


def _collect_if(cond):
    # TODO: remove this once test_encode_jpeg_reference and test_write_jpeg_reference
    # are removed
    def _inner(test_func):
        if cond:
            return test_func
        else:
            return pytest.mark.dont_collect(test_func)

    return _inner


@_collect_if(cond=False)
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_encode_jpeg_reference(img_path):
    # This test is *wrong*.
    # It compares a torchvision-encoded jpeg with a PIL-encoded jpeg (the reference), but it
    # starts encoding the torchvision version from an image that comes from
    # decode_jpeg, which can yield different results from pil.decode (see
    # test_decode... which uses a high tolerance).
    # Instead, we should start encoding from the exact same decoded image, for a
    # valid comparison. This is done in test_encode_jpeg, but unfortunately
    # these more correct tests fail on windows (probably because of a difference
    # in libjpeg) between torchvision and PIL.
    # FIXME: make the correct tests pass on windows and remove this.
    dirname = os.path.dirname(img_path)
    filename, _ = os.path.splitext(os.path.basename(img_path))
    write_folder = os.path.join(dirname, "jpeg_write")
    expected_file = os.path.join(write_folder, f"{filename}_pil.jpg")
    img = decode_jpeg(read_file(img_path))

    with open(expected_file, "rb") as f:
        pil_bytes = f.read()
        pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8)
    for src_img in [img, img.contiguous()]:
        # PIL sets jpeg quality to 75 by default
        jpeg_bytes = encode_jpeg(src_img, quality=75)
        assert_equal(jpeg_bytes, pil_bytes)


@_collect_if(cond=False)
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_write_jpeg_reference(img_path, tmpdir):
    # FIXME: Remove this eventually, see test_encode_jpeg_reference
    data = read_file(img_path)
    img = decode_jpeg(data)

    basedir = os.path.dirname(img_path)
    filename, _ = os.path.splitext(os.path.basename(img_path))
    torch_jpeg = os.path.join(tmpdir, f"{filename}_torch.jpg")
    pil_jpeg = os.path.join(basedir, "jpeg_write", f"{filename}_pil.jpg")

    write_jpeg(img, torch_jpeg, quality=75)

    with open(torch_jpeg, "rb") as f:
        torch_bytes = f.read()

    with open(pil_jpeg, "rb") as f:
        pil_bytes = f.read()

    assert_equal(torch_bytes, pil_bytes)


# TODO: Remove the skip. See https://github.com/pytorch/vision/issues/5162.
@pytest.mark.skip("this test fails because PIL uses libjpeg-turbo")
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_encode_jpeg(img_path):
    img = read_image(img_path)

    pil_img = F.to_pil_image(img)
    buf = io.BytesIO()
    pil_img.save(buf, format="JPEG", quality=75)

    encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)

    for src_img in [img, img.contiguous()]:
        encoded_jpeg_torch = encode_jpeg(src_img, quality=75)
        assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)


# TODO: Remove the skip. See https://github.com/pytorch/vision/issues/5162.
@pytest.mark.skip("this test fails because PIL uses libjpeg-turbo")
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
def test_write_jpeg(img_path, tmpdir):
    tmpdir = Path(tmpdir)
    img = read_image(img_path)
    pil_img = F.to_pil_image(img)

    torch_jpeg = str(tmpdir / "torch.jpg")
    pil_jpeg = str(tmpdir / "pil.jpg")

    write_jpeg(img, torch_jpeg, quality=75)
    pil_img.save(pil_jpeg, quality=75)

    with open(torch_jpeg, "rb") as f:
        torch_bytes = f.read()

    with open(pil_jpeg, "rb") as f:
        pil_bytes = f.read()

    assert_equal(torch_bytes, pil_bytes)


if __name__ == "__main__":
    pytest.main([__file__])