1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
import copy
import pytest
import torch
from common_utils import assert_equal
from torchvision.models.detection import _utils, backbone_utils
from torchvision.models.detection.transform import GeneralizedRCNNTransform
class TestModelsDetectionUtils:
def test_balanced_positive_negative_sampler(self):
sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
# keep all 6 negatives first, then add 3 positives, last two are ignore
matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])]
pos, neg = sampler(matched_idxs)
# we know the number of elements that should be sampled for the positive (1)
# and the negative (3), and their location. Let's make sure that they are
# there
assert pos[0].sum() == 1
assert pos[0][6:9].sum() == 1
assert neg[0].sum() == 3
assert neg[0][0:6].sum() == 3
def test_box_linear_coder(self):
box_coder = _utils.BoxLinearCoder(normalize_by_size=True)
# Generate a random 10x4 boxes tensor, with coordinates < 50.
boxes = torch.rand(10, 4) * 50
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
boxes[:, 2:] += boxes[:, :2]
proposals = torch.tensor([0, 0, 101, 101] * 10).reshape(10, 4).float()
rel_codes = box_coder.encode(boxes, proposals)
pred_boxes = box_coder.decode(rel_codes, boxes)
torch.allclose(proposals, pred_boxes)
@pytest.mark.parametrize("train_layers, exp_froz_params", [(0, 53), (1, 43), (2, 24), (3, 11), (4, 1), (5, 0)])
def test_resnet_fpn_backbone_frozen_layers(self, train_layers, exp_froz_params):
# we know how many initial layers and parameters of the network should
# be frozen for each trainable_backbone_layers parameter value
# i.e all 53 params are frozen if trainable_backbone_layers=0
# ad first 24 params are frozen if trainable_backbone_layers=2
model = backbone_utils.resnet_fpn_backbone("resnet50", weights=None, trainable_layers=train_layers)
# boolean list that is true if the param at that index is frozen
is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
# check that expected initial number of layers are frozen
assert all(is_frozen[:exp_froz_params])
def test_validate_resnet_inputs_detection(self):
# default number of backbone layers to train
ret = backbone_utils._validate_trainable_layers(
is_trained=True, trainable_backbone_layers=None, max_value=5, default_value=3
)
assert ret == 3
# can't go beyond 5
with pytest.raises(ValueError, match=r"Trainable backbone layers should be in the range"):
ret = backbone_utils._validate_trainable_layers(
is_trained=True, trainable_backbone_layers=6, max_value=5, default_value=3
)
# if not trained, should use all trainable layers and warn
with pytest.warns(UserWarning):
ret = backbone_utils._validate_trainable_layers(
is_trained=False, trainable_backbone_layers=0, max_value=5, default_value=3
)
assert ret == 5
def test_transform_copy_targets(self):
transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)]
targets = [{"boxes": torch.rand(3, 4)}, {"boxes": torch.rand(2, 4)}]
targets_copy = copy.deepcopy(targets)
out = transform(image, targets) # noqa: F841
assert_equal(targets[0]["boxes"], targets_copy[0]["boxes"])
assert_equal(targets[1]["boxes"], targets_copy[1]["boxes"])
def test_not_float_normalize(self):
transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)]
targets = [{"boxes": torch.rand(3, 4)}]
with pytest.raises(TypeError):
out = transform(image, targets) # noqa: F841
if __name__ == "__main__":
pytest.main([__file__])
|