File: test_utils.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (396 lines) | stat: -rw-r--r-- 16,314 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import re
import sys
import tempfile
from io import BytesIO

import numpy as np
import pytest
import torch
import torchvision.transforms.functional as F
import torchvision.utils as utils
from common_utils import assert_equal
from PIL import __version__ as PILLOW_VERSION, Image, ImageColor


PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))

boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

keypoints = torch.tensor([[[10, 10], [5, 5], [2, 2]], [[20, 20], [30, 30], [3, 3]]], dtype=torch.float)


def test_make_grid_not_inplace():
    t = torch.rand(5, 3, 10, 10)
    t_clone = t.clone()

    utils.make_grid(t, normalize=False)
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")

    utils.make_grid(t, normalize=True, scale_each=False)
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")

    utils.make_grid(t, normalize=True, scale_each=True)
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")


def test_normalize_in_make_grid():
    t = torch.rand(5, 3, 10, 10) * 255
    norm_max = torch.tensor(1.0)
    norm_min = torch.tensor(0.0)

    grid = utils.make_grid(t, normalize=True)
    grid_max = torch.max(grid)
    grid_min = torch.min(grid)

    # Rounding the result to one decimal for comparison
    n_digits = 1
    rounded_grid_max = torch.round(grid_max * 10**n_digits) / (10**n_digits)
    rounded_grid_min = torch.round(grid_min * 10**n_digits) / (10**n_digits)

    assert_equal(norm_max, rounded_grid_max, msg="Normalized max is not equal to 1")
    assert_equal(norm_min, rounded_grid_min, msg="Normalized min is not equal to 0")


@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image():
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
        assert os.path.exists(f.name), "The image is not present after save"


@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_single_pixel():
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
        assert os.path.exists(f.name), "The pixel image is not present after save"


@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_file_object():
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
        utils.save_image(t, fp, format="png")
        img_bytes = Image.open(fp)
        assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")


@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_single_pixel_file_object():
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
        utils.save_image(t, fp, format="png")
        img_bytes = Image.open(fp)
        assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")


def test_draw_boxes():
    img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
    labels = ["a", "b", "c", "d"]
    colors = ["green", "#FF00FF", (0, 255, 0), "red"]
    result = utils.draw_bounding_boxes(img, boxes, labels=labels, colors=colors, fill=True)

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_util.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    if PILLOW_VERSION >= (8, 2):
        # The reference image is only valid for new PIL versions
        expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
        assert_equal(result, expected)

    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


@pytest.mark.parametrize("colors", [None, ["red", "blue", "#FF00FF", (1, 34, 122)], "red", "#FF00FF", (1, 34, 122)])
def test_draw_boxes_colors(colors):
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors=colors)


def test_draw_boxes_vanilla():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
    result = utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors="white")

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_vanilla.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)
    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


def test_draw_boxes_grayscale():
    img = torch.full((1, 4, 4), fill_value=255, dtype=torch.uint8)
    boxes = torch.tensor([[0, 0, 3, 3]], dtype=torch.int64)
    bboxed_img = utils.draw_bounding_boxes(image=img, boxes=boxes, colors=["#1BBC9B"])
    assert bboxed_img.size(0) == 3


def test_draw_invalid_boxes():
    img_tp = ((1, 1, 1), (1, 2, 3))
    img_wrong1 = torch.full((3, 5, 5), 255, dtype=torch.float)
    img_wrong2 = torch.full((1, 3, 5, 5), 255, dtype=torch.uint8)
    img_correct = torch.zeros((3, 10, 10), dtype=torch.uint8)
    boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
    boxes_wrong = torch.tensor([[10, 10, 4, 5], [30, 20, 10, 5]], dtype=torch.float)
    labels_wrong = ["one", "two"]
    colors_wrong = ["pink", "blue"]

    with pytest.raises(TypeError, match="Tensor expected"):
        utils.draw_bounding_boxes(img_tp, boxes)
    with pytest.raises(ValueError, match="Tensor uint8 expected"):
        utils.draw_bounding_boxes(img_wrong1, boxes)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        utils.draw_bounding_boxes(img_wrong2, boxes)
    with pytest.raises(ValueError, match="Only grayscale and RGB images are supported"):
        utils.draw_bounding_boxes(img_wrong2[0][:2], boxes)
    with pytest.raises(ValueError, match="Number of boxes"):
        utils.draw_bounding_boxes(img_correct, boxes, labels_wrong)
    with pytest.raises(ValueError, match="Number of colors"):
        utils.draw_bounding_boxes(img_correct, boxes, colors=colors_wrong)
    with pytest.raises(ValueError, match="Boxes need to be in"):
        utils.draw_bounding_boxes(img_correct, boxes_wrong)


def test_draw_boxes_warning():
    img = torch.full((3, 100, 100), 255, dtype=torch.uint8)

    with pytest.warns(UserWarning, match=re.escape("Argument 'font_size' will be ignored since 'font' is not set.")):
        utils.draw_bounding_boxes(img, boxes, font_size=11)


def test_draw_no_boxes():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    boxes = torch.full((0, 4), 0, dtype=torch.float)
    with pytest.warns(UserWarning, match=re.escape("boxes doesn't contain any box. No box was drawn")):
        res = utils.draw_bounding_boxes(img, boxes)
        # Check that the function didnt change the image
        assert res.eq(img).all()


@pytest.mark.parametrize(
    "colors",
    [
        None,
        "blue",
        "#FF00FF",
        (1, 34, 122),
        ["red", "blue"],
        ["#FF00FF", (1, 34, 122)],
    ],
)
@pytest.mark.parametrize("alpha", (0, 0.5, 0.7, 1))
def test_draw_segmentation_masks(colors, alpha):
    """This test makes sure that masks draw their corresponding color where they should"""
    num_masks, h, w = 2, 100, 100
    dtype = torch.uint8
    img = torch.randint(0, 256, size=(3, h, w), dtype=dtype)
    masks = torch.randint(0, 2, (num_masks, h, w), dtype=torch.bool)

    # For testing we enforce that there's no overlap between the masks. The
    # current behaviour is that the last mask's color will take priority when
    # masks overlap, but this makes testing slightly harder so we don't really
    # care
    overlap = masks[0] & masks[1]
    masks[:, overlap] = False

    out = utils.draw_segmentation_masks(img, masks, colors=colors, alpha=alpha)
    assert out.dtype == dtype
    assert out is not img

    # Make sure the image didn't change where there's no mask
    masked_pixels = masks[0] | masks[1]
    assert_equal(img[:, ~masked_pixels], out[:, ~masked_pixels])

    if colors is None:
        colors = utils._generate_color_palette(num_masks)
    elif isinstance(colors, str) or isinstance(colors, tuple):
        colors = [colors]

    # Make sure each mask draws with its own color
    for mask, color in zip(masks, colors):
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
        color = torch.tensor(color, dtype=dtype)

        if alpha == 1:
            assert (out[:, mask] == color[:, None]).all()
        elif alpha == 0:
            assert (out[:, mask] == img[:, mask]).all()

        interpolated_color = (img[:, mask] * (1 - alpha) + color[:, None] * alpha).to(dtype)
        torch.testing.assert_close(out[:, mask], interpolated_color, rtol=0.0, atol=1.0)


def test_draw_segmentation_masks_errors():
    h, w = 10, 10

    masks = torch.randint(0, 2, size=(h, w), dtype=torch.bool)
    img = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8)

    with pytest.raises(TypeError, match="The image must be a tensor"):
        utils.draw_segmentation_masks(image="Not A Tensor Image", masks=masks)
    with pytest.raises(ValueError, match="The image dtype must be"):
        img_bad_dtype = torch.randint(0, 256, size=(3, h, w), dtype=torch.int64)
        utils.draw_segmentation_masks(image=img_bad_dtype, masks=masks)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=batch, masks=masks)
    with pytest.raises(ValueError, match="Pass an RGB image"):
        one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=one_channel, masks=masks)
    with pytest.raises(ValueError, match="The masks must be of dtype bool"):
        masks_bad_dtype = torch.randint(0, 2, size=(h, w), dtype=torch.float)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_dtype)
    with pytest.raises(ValueError, match="masks must be of shape"):
        masks_bad_shape = torch.randint(0, 2, size=(3, 2, h, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
    with pytest.raises(ValueError, match="must have the same height and width"):
        masks_bad_shape = torch.randint(0, 2, size=(h + 4, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
    with pytest.raises(ValueError, match="There are more masks"):
        utils.draw_segmentation_masks(image=img, masks=masks, colors=[])
    with pytest.raises(ValueError, match="colors must be a tuple or a string, or a list thereof"):
        bad_colors = np.array(["red", "blue"])  # should be a list
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
    with pytest.raises(ValueError, match="It seems that you passed a tuple of colors instead of"):
        bad_colors = ("red", "blue")  # should be a list
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)


def test_draw_no_segmention_mask():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    masks = torch.full((0, 100, 100), 0, dtype=torch.bool)
    with pytest.warns(UserWarning, match=re.escape("masks doesn't contain any mask. No mask was drawn")):
        res = utils.draw_segmentation_masks(img, masks)
        # Check that the function didnt change the image
        assert res.eq(img).all()


def test_draw_keypoints_vanilla():
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
    result = utils.draw_keypoints(
        img,
        keypoints,
        colors="red",
        connectivity=[
            (0, 1),
        ],
    )
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoint_vanilla.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)
    # Check that keypoints are not modified inplace
    assert_equal(keypoints, keypoints_cp)
    # Check that image is not modified in place
    assert_equal(img, img_cp)


@pytest.mark.parametrize("colors", ["red", "#FF00FF", (1, 34, 122)])
def test_draw_keypoints_colored(colors):
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
    result = utils.draw_keypoints(
        img,
        keypoints,
        colors=colors,
        connectivity=[
            (0, 1),
        ],
    )
    assert result.size(0) == 3
    assert_equal(keypoints, keypoints_cp)
    assert_equal(img, img_cp)


def test_draw_keypoints_errors():
    h, w = 10, 10
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)

    with pytest.raises(TypeError, match="The image must be a tensor"):
        utils.draw_keypoints(image="Not A Tensor Image", keypoints=keypoints)
    with pytest.raises(ValueError, match="The image dtype must be"):
        img_bad_dtype = torch.full((3, h, w), 0, dtype=torch.int64)
        utils.draw_keypoints(image=img_bad_dtype, keypoints=keypoints)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
        utils.draw_keypoints(image=batch, keypoints=keypoints)
    with pytest.raises(ValueError, match="Pass an RGB image"):
        one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
        utils.draw_keypoints(image=one_channel, keypoints=keypoints)
    with pytest.raises(ValueError, match="keypoints must be of shape"):
        invalid_keypoints = torch.tensor([[10, 10, 10, 10], [5, 6, 7, 8]], dtype=torch.float)
        utils.draw_keypoints(image=img, keypoints=invalid_keypoints)


@pytest.mark.parametrize("batch", (True, False))
def test_flow_to_image(batch):
    h, w = 100, 100
    flow = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
    flow = torch.stack(flow[::-1], dim=0).float()
    flow[0] -= h / 2
    flow[1] -= w / 2

    if batch:
        flow = torch.stack([flow, flow])

    img = utils.flow_to_image(flow)
    assert img.shape == (2, 3, h, w) if batch else (3, h, w)

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "expected_flow.pt")
    expected_img = torch.load(path, map_location="cpu")

    if batch:
        expected_img = torch.stack([expected_img, expected_img])

    assert_equal(expected_img, img)


@pytest.mark.parametrize(
    "input_flow, match",
    (
        (torch.full((3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((5, 3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((2, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((5, 2, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((2, 10, 30), 0, dtype=torch.int), "Flow should be of dtype torch.float"),
    ),
)
def test_flow_to_image_errors(input_flow, match):
    with pytest.raises(ValueError, match=match):
        utils.flow_to_image(flow=input_flow)


if __name__ == "__main__":
    pytest.main([__file__])