1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
#include <torch/script.h>
#include <torch/torch.h>
#include <torchvision/vision.h>
#include <torchvision/ops/nms.h>
int main() {
torch::DeviceType device_type;
device_type = torch::kCPU;
torch::jit::script::Module module;
try {
std::cout << "Loading model\n";
// Deserialize the ScriptModule from a file using torch::jit::load().
module = torch::jit::load("fasterrcnn_resnet50_fpn.pt");
std::cout << "Model loaded\n";
} catch (const torch::Error& e) {
std::cout << "error loading the model\n";
return -1;
} catch (const std::exception& e) {
std::cout << "Other error: " << e.what() << "\n";
return -1;
}
// TorchScript models require a List[IValue] as input
std::vector<torch::jit::IValue> inputs;
// Faster RCNN accepts a List[Tensor] as main input
std::vector<torch::Tensor> images;
images.push_back(torch::rand({3, 256, 275}));
images.push_back(torch::rand({3, 256, 275}));
inputs.push_back(images);
auto output = module.forward(inputs);
std::cout << "ok\n";
std::cout << "output" << output << "\n";
if (torch::cuda::is_available()) {
// Move traced model to GPU
module.to(torch::kCUDA);
// Add GPU inputs
images.clear();
inputs.clear();
torch::TensorOptions options = torch::TensorOptions{torch::kCUDA};
images.push_back(torch::rand({3, 256, 275}, options));
images.push_back(torch::rand({3, 256, 275}, options));
inputs.push_back(images);
auto output = module.forward(inputs);
std::cout << "ok\n";
std::cout << "output" << output << "\n";
}
return 0;
}
|