1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
#include "decode_png.h"
#include "common_png.h"
namespace vision {
namespace image {
#if !PNG_FOUND
torch::Tensor decode_png(
const torch::Tensor& data,
ImageReadMode mode,
bool allow_16_bits) {
TORCH_CHECK(
false, "decode_png: torchvision not compiled with libPNG support");
}
#else
bool is_little_endian() {
uint32_t x = 1;
return *(uint8_t*)&x;
}
torch::Tensor decode_png(
const torch::Tensor& data,
ImageReadMode mode,
bool allow_16_bits) {
C10_LOG_API_USAGE_ONCE("torchvision.csrc.io.image.cpu.decode_png.decode_png");
// Check that the input tensor dtype is uint8
TORCH_CHECK(data.dtype() == torch::kU8, "Expected a torch.uint8 tensor");
// Check that the input tensor is 1-dimensional
TORCH_CHECK(
data.dim() == 1 && data.numel() > 0,
"Expected a non empty 1-dimensional tensor");
auto png_ptr =
png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
TORCH_CHECK(png_ptr, "libpng read structure allocation failed!")
auto info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
png_destroy_read_struct(&png_ptr, nullptr, nullptr);
// Seems redundant with the if statement. done here to avoid leaking memory.
TORCH_CHECK(info_ptr, "libpng info structure allocation failed!")
}
auto accessor = data.accessor<unsigned char, 1>();
auto datap = accessor.data();
auto datap_len = accessor.size(0);
if (setjmp(png_jmpbuf(png_ptr)) != 0) {
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
TORCH_CHECK(false, "Internal error.");
}
auto is_png = !png_sig_cmp(datap, 0, 8);
TORCH_CHECK(is_png, "Content is not png!")
struct Reader {
png_const_bytep ptr;
png_size_t count;
} reader;
reader.ptr = png_const_bytep(datap) + 8;
reader.count = datap_len - 8;
auto read_callback = [](png_structp png_ptr,
png_bytep output,
png_size_t bytes) {
auto reader = static_cast<Reader*>(png_get_io_ptr(png_ptr));
TORCH_CHECK(
reader->count >= bytes,
"Out of bound read in decode_png. Probably, the input image is corrupted");
std::copy(reader->ptr, reader->ptr + bytes, output);
reader->ptr += bytes;
reader->count -= bytes;
};
png_set_sig_bytes(png_ptr, 8);
png_set_read_fn(png_ptr, &reader, read_callback);
png_read_info(png_ptr, info_ptr);
png_uint_32 width, height;
int bit_depth, color_type;
int interlace_type;
auto retval = png_get_IHDR(
png_ptr,
info_ptr,
&width,
&height,
&bit_depth,
&color_type,
&interlace_type,
nullptr,
nullptr);
if (retval != 1) {
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
TORCH_CHECK(retval == 1, "Could read image metadata from content.")
}
auto max_bit_depth = allow_16_bits ? 16 : 8;
auto err_msg = "At most " + std::to_string(max_bit_depth) +
"-bit PNG images are supported currently.";
if (bit_depth > max_bit_depth) {
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
TORCH_CHECK(false, err_msg)
}
int channels = png_get_channels(png_ptr, info_ptr);
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
png_set_expand_gray_1_2_4_to_8(png_ptr);
int number_of_passes;
if (interlace_type == PNG_INTERLACE_ADAM7) {
number_of_passes = png_set_interlace_handling(png_ptr);
} else {
number_of_passes = 1;
}
if (mode != IMAGE_READ_MODE_UNCHANGED) {
// TODO: consider supporting PNG_INFO_tRNS
bool is_palette = (color_type & PNG_COLOR_MASK_PALETTE) != 0;
bool has_color = (color_type & PNG_COLOR_MASK_COLOR) != 0;
bool has_alpha = (color_type & PNG_COLOR_MASK_ALPHA) != 0;
switch (mode) {
case IMAGE_READ_MODE_GRAY:
if (color_type != PNG_COLOR_TYPE_GRAY) {
if (is_palette) {
png_set_palette_to_rgb(png_ptr);
has_alpha = true;
}
if (has_alpha) {
png_set_strip_alpha(png_ptr);
}
if (has_color) {
png_set_rgb_to_gray(png_ptr, 1, 0.2989, 0.587);
}
channels = 1;
}
break;
case IMAGE_READ_MODE_GRAY_ALPHA:
if (color_type != PNG_COLOR_TYPE_GRAY_ALPHA) {
if (is_palette) {
png_set_palette_to_rgb(png_ptr);
has_alpha = true;
}
if (!has_alpha) {
png_set_add_alpha(png_ptr, (1 << bit_depth) - 1, PNG_FILLER_AFTER);
}
if (has_color) {
png_set_rgb_to_gray(png_ptr, 1, 0.2989, 0.587);
}
channels = 2;
}
break;
case IMAGE_READ_MODE_RGB:
if (color_type != PNG_COLOR_TYPE_RGB) {
if (is_palette) {
png_set_palette_to_rgb(png_ptr);
has_alpha = true;
} else if (!has_color) {
png_set_gray_to_rgb(png_ptr);
}
if (has_alpha) {
png_set_strip_alpha(png_ptr);
}
channels = 3;
}
break;
case IMAGE_READ_MODE_RGB_ALPHA:
if (color_type != PNG_COLOR_TYPE_RGB_ALPHA) {
if (is_palette) {
png_set_palette_to_rgb(png_ptr);
has_alpha = true;
} else if (!has_color) {
png_set_gray_to_rgb(png_ptr);
}
if (!has_alpha) {
png_set_add_alpha(png_ptr, (1 << bit_depth) - 1, PNG_FILLER_AFTER);
}
channels = 4;
}
break;
default:
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
TORCH_CHECK(false, "The provided mode is not supported for PNG files");
}
png_read_update_info(png_ptr, info_ptr);
}
auto num_pixels_per_row = width * channels;
auto tensor = torch::empty(
{int64_t(height), int64_t(width), channels},
bit_depth <= 8 ? torch::kU8 : torch::kI32);
if (bit_depth <= 8) {
auto t_ptr = tensor.accessor<uint8_t, 3>().data();
for (int pass = 0; pass < number_of_passes; pass++) {
for (png_uint_32 i = 0; i < height; ++i) {
png_read_row(png_ptr, t_ptr, nullptr);
t_ptr += num_pixels_per_row;
}
t_ptr = tensor.accessor<uint8_t, 3>().data();
}
} else {
// We're reading a 16bits png, but pytorch doesn't support uint16.
// So we read each row in a 16bits tmp_buffer which we then cast into
// a int32 tensor instead.
if (is_little_endian()) {
png_set_swap(png_ptr);
}
int32_t* t_ptr = tensor.accessor<int32_t, 3>().data();
// We create a tensor instead of malloc-ing for automatic memory management
auto tmp_buffer_tensor = torch::empty(
{int64_t(num_pixels_per_row * sizeof(uint16_t))}, torch::kU8);
uint16_t* tmp_buffer =
(uint16_t*)tmp_buffer_tensor.accessor<uint8_t, 1>().data();
for (int pass = 0; pass < number_of_passes; pass++) {
for (png_uint_32 i = 0; i < height; ++i) {
png_read_row(png_ptr, (uint8_t*)tmp_buffer, nullptr);
// Now we copy the uint16 values into the int32 tensor.
for (size_t j = 0; j < num_pixels_per_row; ++j) {
t_ptr[j] = (int32_t)tmp_buffer[j];
}
t_ptr += num_pixels_per_row;
}
t_ptr = tensor.accessor<int32_t, 3>().data();
}
}
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
return tensor.permute({2, 0, 1});
}
#endif
} // namespace image
} // namespace vision
|