File: ps_roi_align_kernel.cpp

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (167 lines) | stat: -rw-r--r-- 4,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "../ps_roi_align.h"

#include <torch/autograd.h>
#include <torch/types.h>

namespace vision {
namespace ops {

namespace {

class PSROIAlignFunction
    : public torch::autograd::Function<PSROIAlignFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["input_shape"] = input.sizes();
    at::AutoDispatchBelowADInplaceOrView g;
    auto result = ps_roi_align(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);

    auto output = std::get<0>(result);
    auto channel_mapping = std::get<1>(result);
    ctx->save_for_backward({rois, channel_mapping});
    ctx->mark_non_differentiable({channel_mapping});

    return {output, channel_mapping};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto channel_mapping = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
    auto grad_in = detail::_ps_roi_align_backward(
        grad_output[0],
        rois,
        channel_mapping,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        ctx->saved_data["sampling_ratio"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);

    return {
        grad_in,
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable()};
  }
};

// TODO: There should be an easier way to do this
class PSROIAlignBackwardFunction
    : public torch::autograd::Function<PSROIAlignBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& channel_mapping,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoDispatchBelowADInplaceOrView g;
    auto grad_in = detail::_ps_roi_align_backward(
        grad,
        rois,
        channel_mapping,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on ps_roi_align not supported");
  }
};

std::tuple<at::Tensor, at::Tensor> ps_roi_align_autograd(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
  auto result = PSROIAlignFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);

  return std::make_tuple(result[0], result[1]);
}

at::Tensor ps_roi_align_backward_autograd(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return PSROIAlignBackwardFunction::apply(
      grad,
      rois,
      channel_mapping,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width)[0];
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::ps_roi_align"),
      TORCH_FN(ps_roi_align_autograd));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_ps_roi_align_backward"),
      TORCH_FN(ps_roi_align_backward_autograd));
}

} // namespace ops
} // namespace vision