File: ps_roi_pool_kernel.cu

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (288 lines) | stat: -rw-r--r-- 9,959 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/library.h>
#include <ATen/cuda/Atomic.cuh>

#include "cuda_helpers.h"

namespace vision {
namespace ops {

namespace {

template <typename T>
__global__ void ps_roi_pool_forward_kernel_impl(
    int nthreads,
    const T* input,
    const T spatial_scale,
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    const T* rois,
    int channels_out,
    T* output,
    int* channel_mapping) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c_out, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c_out = (index / pooled_width / pooled_height) % channels_out;
    int n = index / pooled_width / pooled_height / channels_out;

    // (n, c_in, ph, pw) is the associated element in the input
    int c_in = (c_out * pooled_height + ph) * pooled_width + pw;

    // [start, end) interval for spatial sampling
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height - 1);
    hend = min(max(hend + roi_start_h, 0), height - 1);
    wstart = min(max(wstart + roi_start_w, 0), width - 1);
    wend = min(max(wend + roi_start_w, 0), width - 1);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    const T* offset_input =
        input + (roi_batch_ind * channels + c_in) * height * width;
    T out_sum = 0;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * width + w;
        out_sum += offset_input[input_index];
      }
    }

    T bin_area = (hend - hstart) * (wend - wstart);
    output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
    channel_mapping[index] = c_in;
  }
}

template <typename T>
__global__ void ps_roi_pool_backward_kernel_impl(
    int nthreads,
    const T* grad_output,
    const int* channel_mapping,
    int num_rois,
    const T spatial_scale,
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int channels_out,
    T* grad_input,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, *, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int n = index / pooled_width / pooled_height / channels_out;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    int c_in = channel_mapping[index];
    T* grad_input_offset =
        grad_input + (roi_batch_ind * channels + c_in) * height * width;
    T bin_area = (hend - hstart) * (wend - wstart);
    T diff_val = is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int grad_input_index = h * width + w;
        gpuAtomicAdd(grad_input_offset + grad_input_index, diff_val);
      }
    }
  }
}

std::tuple<at::Tensor, at::Tensor> ps_roi_pool_forward_kernel(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
  // Check if input tensors are CUDA tensors
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
      rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ps_roi_pool_forward_kernel";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  TORCH_CHECK(
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, channel_mapping);
  }

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
  dim3 block(512);

  auto input_ = input.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "ps_roi_pool_forward_kernel", [&] {
        ps_roi_pool_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            output_size,
            input_.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            rois_.data_ptr<scalar_t>(),
            channels_out,
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return std::make_tuple(output, channel_mapping);
}

at::Tensor ps_roi_pool_backward_kernel(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  // Check if input tensors are CUDA tensors
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
      channel_mapping.is_cuda(), "channel_mapping must be a CUDA tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

  at::CheckedFrom c = "ps_roi_pool_backward_kernel";
  at::checkAllSameGPU(c, {grad_t, rois_t, channel_mapping_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      grad.scalar_type(), "ps_roi_pool_backward_kernel", [&] {
        ps_roi_pool_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            grad.numel(),
            grad_.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>(),
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            channels_out,
            grad_input.data_ptr<scalar_t>(),
            rois_.data_ptr<scalar_t>());
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::ps_roi_pool"),
      TORCH_FN(ps_roi_pool_forward_kernel));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_ps_roi_pool_backward"),
      TORCH_FN(ps_roi_pool_backward_kernel));
}

} // namespace ops
} // namespace vision