File: clip_sampler.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (172 lines) | stat: -rw-r--r-- 6,244 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import math
from typing import cast, Iterator, List, Optional, Sized, Union

import torch
import torch.distributed as dist
from torch.utils.data import Sampler
from torchvision.datasets.video_utils import VideoClips


class DistributedSampler(Sampler):
    """
    Extension of DistributedSampler, as discussed in
    https://github.com/pytorch/pytorch/issues/23430

    Example:
        dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
        num_replicas: 4
        shuffle: False

    when group_size = 1
            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 4, 8, 12]
            rank_1  |  [1, 5, 9, 13]
            rank_2  |  [2, 6, 10, 0]
            rank_3  |  [3, 7, 11, 1]

    when group_size = 2

            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 1, 8, 9]
            rank_1  |  [2, 3, 10, 11]
            rank_2  |  [4, 5, 12, 13]
            rank_3  |  [6, 7, 0, 1]

    """

    def __init__(
        self,
        dataset: Sized,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        shuffle: bool = False,
        group_size: int = 1,
    ) -> None:
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        if len(dataset) % group_size != 0:
            raise ValueError(
                f"dataset length must be a multiplier of group size dataset length: {len(dataset)}, group size: {group_size}"
            )
        self.dataset = dataset
        self.group_size = group_size
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        dataset_group_length = len(dataset) // group_size
        self.num_group_samples = int(math.ceil(dataset_group_length * 1.0 / self.num_replicas))
        self.num_samples = self.num_group_samples * group_size
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle

    def __iter__(self) -> Iterator[int]:
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
        indices: Union[torch.Tensor, List[int]]
        if self.shuffle:
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        total_group_size = self.total_size // self.group_size
        indices = torch.reshape(torch.LongTensor(indices), (total_group_size, self.group_size))

        # subsample
        indices = indices[self.rank : total_group_size : self.num_replicas, :]
        indices = torch.reshape(indices, (-1,)).tolist()
        assert len(indices) == self.num_samples

        if isinstance(self.dataset, Sampler):
            orig_indices = list(iter(self.dataset))
            indices = [orig_indices[i] for i in indices]

        return iter(indices)

    def __len__(self) -> int:
        return self.num_samples

    def set_epoch(self, epoch: int) -> None:
        self.epoch = epoch


class UniformClipSampler(Sampler):
    """
    Sample `num_video_clips_per_video` clips for each video, equally spaced.
    When number of unique clips in the video is fewer than num_video_clips_per_video,
    repeat the clips until `num_video_clips_per_video` clips are collected

    Args:
        video_clips (VideoClips): video clips to sample from
        num_clips_per_video (int): number of clips to be sampled per video
    """

    def __init__(self, video_clips: VideoClips, num_clips_per_video: int) -> None:
        if not isinstance(video_clips, VideoClips):
            raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
        self.video_clips = video_clips
        self.num_clips_per_video = num_clips_per_video

    def __iter__(self) -> Iterator[int]:
        idxs = []
        s = 0
        # select num_clips_per_video for each video, uniformly spaced
        for c in self.video_clips.clips:
            length = len(c)
            if length == 0:
                # corner case where video decoding fails
                continue

            sampled = torch.linspace(s, s + length - 1, steps=self.num_clips_per_video).floor().to(torch.int64)
            s += length
            idxs.append(sampled)
        return iter(cast(List[int], torch.cat(idxs).tolist()))

    def __len__(self) -> int:
        return sum(self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0)


class RandomClipSampler(Sampler):
    """
    Samples at most `max_video_clips_per_video` clips for each video randomly

    Args:
        video_clips (VideoClips): video clips to sample from
        max_clips_per_video (int): maximum number of clips to be sampled per video
    """

    def __init__(self, video_clips: VideoClips, max_clips_per_video: int) -> None:
        if not isinstance(video_clips, VideoClips):
            raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
        self.video_clips = video_clips
        self.max_clips_per_video = max_clips_per_video

    def __iter__(self) -> Iterator[int]:
        idxs = []
        s = 0
        # select at most max_clips_per_video for each video, randomly
        for c in self.video_clips.clips:
            length = len(c)
            size = min(length, self.max_clips_per_video)
            sampled = torch.randperm(length)[:size] + s
            s += length
            idxs.append(sampled)
        idxs_ = torch.cat(idxs)
        # shuffle all clips randomly
        perm = torch.randperm(len(idxs_))
        return iter(idxs_[perm].tolist())

    def __len__(self) -> int:
        return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)