1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
import importlib
import inspect
import sys
from dataclasses import dataclass, fields
from inspect import signature
from types import ModuleType
from typing import Any, Callable, cast, Dict, List, Mapping, Optional, TypeVar, Union
from torch import nn
from torchvision._utils import StrEnum
from .._internally_replaced_utils import load_state_dict_from_url
__all__ = ["WeightsEnum", "Weights", "get_model", "get_model_builder", "get_model_weights", "get_weight", "list_models"]
@dataclass
class Weights:
"""
This class is used to group important attributes associated with the pre-trained weights.
Args:
url (str): The location where we find the weights.
transforms (Callable): A callable that constructs the preprocessing method (or validation preset transforms)
needed to use the model. The reason we attach a constructor method rather than an already constructed
object is because the specific object might have memory and thus we want to delay initialization until
needed.
meta (Dict[str, Any]): Stores meta-data related to the weights of the model and its configuration. These can be
informative attributes (for example the number of parameters/flops, recipe link/methods used in training
etc), configuration parameters (for example the `num_classes`) needed to construct the model or important
meta-data (for example the `classes` of a classification model) needed to use the model.
"""
url: str
transforms: Callable
meta: Dict[str, Any]
class WeightsEnum(StrEnum):
"""
This class is the parent class of all model weights. Each model building method receives an optional `weights`
parameter with its associated pre-trained weights. It inherits from `Enum` and its values should be of type
`Weights`.
Args:
value (Weights): The data class entry with the weight information.
"""
def __init__(self, value: Weights):
self._value_ = value
@classmethod
def verify(cls, obj: Any) -> Any:
if obj is not None:
if type(obj) is str:
obj = cls.from_str(obj.replace(cls.__name__ + ".", ""))
elif not isinstance(obj, cls):
raise TypeError(
f"Invalid Weight class provided; expected {cls.__name__} but received {obj.__class__.__name__}."
)
return obj
def get_state_dict(self, progress: bool) -> Mapping[str, Any]:
return load_state_dict_from_url(self.url, progress=progress)
def __repr__(self) -> str:
return f"{self.__class__.__name__}.{self._name_}"
def __getattr__(self, name):
# Be able to fetch Weights attributes directly
for f in fields(Weights):
if f.name == name:
return object.__getattribute__(self.value, name)
return super().__getattr__(name)
def get_weight(name: str) -> WeightsEnum:
"""
Gets the weights enum value by its full name. Example: "ResNet50_Weights.IMAGENET1K_V1"
.. betastatus:: function
Args:
name (str): The name of the weight enum entry.
Returns:
WeightsEnum: The requested weight enum.
"""
try:
enum_name, value_name = name.split(".")
except ValueError:
raise ValueError(f"Invalid weight name provided: '{name}'.")
base_module_name = ".".join(sys.modules[__name__].__name__.split(".")[:-1])
base_module = importlib.import_module(base_module_name)
model_modules = [base_module] + [
x[1] for x in inspect.getmembers(base_module, inspect.ismodule) if x[1].__file__.endswith("__init__.py")
]
weights_enum = None
for m in model_modules:
potential_class = m.__dict__.get(enum_name, None)
if potential_class is not None and issubclass(potential_class, WeightsEnum):
weights_enum = potential_class
break
if weights_enum is None:
raise ValueError(f"The weight enum '{enum_name}' for the specific method couldn't be retrieved.")
return weights_enum.from_str(value_name)
def get_model_weights(name: Union[Callable, str]) -> WeightsEnum:
"""
Retuns the weights enum class associated to the given model.
.. betastatus:: function
Args:
name (callable or str): The model builder function or the name under which it is registered.
Returns:
weights_enum (WeightsEnum): The weights enum class associated with the model.
"""
model = get_model_builder(name) if isinstance(name, str) else name
return _get_enum_from_fn(model)
def _get_enum_from_fn(fn: Callable) -> WeightsEnum:
"""
Internal method that gets the weight enum of a specific model builder method.
Args:
fn (Callable): The builder method used to create the model.
weight_name (str): The name of the weight enum entry of the specific model.
Returns:
WeightsEnum: The requested weight enum.
"""
sig = signature(fn)
if "weights" not in sig.parameters:
raise ValueError("The method is missing the 'weights' argument.")
ann = signature(fn).parameters["weights"].annotation
weights_enum = None
if isinstance(ann, type) and issubclass(ann, WeightsEnum):
weights_enum = ann
else:
# handle cases like Union[Optional, T]
# TODO: Replace ann.__args__ with typing.get_args(ann) after python >= 3.8
for t in ann.__args__: # type: ignore[union-attr]
if isinstance(t, type) and issubclass(t, WeightsEnum):
weights_enum = t
break
if weights_enum is None:
raise ValueError(
"The WeightsEnum class for the specific method couldn't be retrieved. Make sure the typing info is correct."
)
return cast(WeightsEnum, weights_enum)
M = TypeVar("M", bound=nn.Module)
BUILTIN_MODELS = {}
def register_model(name: Optional[str] = None) -> Callable[[Callable[..., M]], Callable[..., M]]:
def wrapper(fn: Callable[..., M]) -> Callable[..., M]:
key = name if name is not None else fn.__name__
if key in BUILTIN_MODELS:
raise ValueError(f"An entry is already registered under the name '{key}'.")
BUILTIN_MODELS[key] = fn
return fn
return wrapper
def list_models(module: Optional[ModuleType] = None) -> List[str]:
"""
Returns a list with the names of registered models.
.. betastatus:: function
Args:
module (ModuleType, optional): The module from which we want to extract the available models.
Returns:
models (list): A list with the names of available models.
"""
models = [
k for k, v in BUILTIN_MODELS.items() if module is None or v.__module__.rsplit(".", 1)[0] == module.__name__
]
return sorted(models)
def get_model_builder(name: str) -> Callable[..., nn.Module]:
"""
Gets the model name and returns the model builder method.
.. betastatus:: function
Args:
name (str): The name under which the model is registered.
Returns:
fn (Callable): The model builder method.
"""
name = name.lower()
try:
fn = BUILTIN_MODELS[name]
except KeyError:
raise ValueError(f"Unknown model {name}")
return fn
def get_model(name: str, **config: Any) -> nn.Module:
"""
Gets the model name and configuration and returns an instantiated model.
.. betastatus:: function
Args:
name (str): The name under which the model is registered.
**config (Any): parameters passed to the model builder method.
Returns:
model (nn.Module): The initialized model.
"""
fn = get_model_builder(name)
return fn(**config)
|