File: raft.py

package info (click to toggle)
pytorch-vision 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,188 kB
  • sloc: python: 49,008; cpp: 10,019; sh: 610; java: 550; xml: 79; objc: 56; makefile: 32
file content (918 lines) | stat: -rw-r--r-- 38,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn.modules.instancenorm import InstanceNorm2d
from torchvision.ops import Conv2dNormActivation

from ...transforms._presets import OpticalFlow
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._utils import handle_legacy_interface
from ._utils import grid_sample, make_coords_grid, upsample_flow


__all__ = (
    "RAFT",
    "raft_large",
    "raft_small",
    "Raft_Large_Weights",
    "Raft_Small_Weights",
)


class ResidualBlock(nn.Module):
    """Slightly modified Residual block with extra relu and biases."""

    def __init__(self, in_channels, out_channels, *, norm_layer, stride=1, always_project: bool = False):
        super().__init__()

        # Note regarding bias=True:
        # Usually we can pass bias=False in conv layers followed by a norm layer.
        # But in the RAFT training reference, the BatchNorm2d layers are only activated for the first dataset,
        # and frozen for the rest of the training process (i.e. set as eval()). The bias term is thus still useful
        # for the rest of the datasets. Technically, we could remove the bias for other norm layers like Instance norm
        # because these aren't frozen, but we don't bother (also, we woudn't be able to load the original weights).
        self.convnormrelu1 = Conv2dNormActivation(
            in_channels, out_channels, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True
        )
        self.convnormrelu2 = Conv2dNormActivation(
            out_channels, out_channels, norm_layer=norm_layer, kernel_size=3, bias=True
        )

        # make mypy happy
        self.downsample: nn.Module

        if stride == 1 and not always_project:
            self.downsample = nn.Identity()
        else:
            self.downsample = Conv2dNormActivation(
                in_channels,
                out_channels,
                norm_layer=norm_layer,
                kernel_size=1,
                stride=stride,
                bias=True,
                activation_layer=None,
            )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        y = x
        y = self.convnormrelu1(y)
        y = self.convnormrelu2(y)

        x = self.downsample(x)

        return self.relu(x + y)


class BottleneckBlock(nn.Module):
    """Slightly modified BottleNeck block (extra relu and biases)"""

    def __init__(self, in_channels, out_channels, *, norm_layer, stride=1):
        super().__init__()

        # See note in ResidualBlock for the reason behind bias=True
        self.convnormrelu1 = Conv2dNormActivation(
            in_channels, out_channels // 4, norm_layer=norm_layer, kernel_size=1, bias=True
        )
        self.convnormrelu2 = Conv2dNormActivation(
            out_channels // 4, out_channels // 4, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True
        )
        self.convnormrelu3 = Conv2dNormActivation(
            out_channels // 4, out_channels, norm_layer=norm_layer, kernel_size=1, bias=True
        )
        self.relu = nn.ReLU(inplace=True)

        if stride == 1:
            self.downsample = nn.Identity()
        else:
            self.downsample = Conv2dNormActivation(
                in_channels,
                out_channels,
                norm_layer=norm_layer,
                kernel_size=1,
                stride=stride,
                bias=True,
                activation_layer=None,
            )

    def forward(self, x):
        y = x
        y = self.convnormrelu1(y)
        y = self.convnormrelu2(y)
        y = self.convnormrelu3(y)

        x = self.downsample(x)

        return self.relu(x + y)


class FeatureEncoder(nn.Module):
    """The feature encoder, used both as the actual feature encoder, and as the context encoder.

    It must downsample its input by 8.
    """

    def __init__(
        self, *, block=ResidualBlock, layers=(64, 64, 96, 128, 256), strides=(2, 1, 2, 2), norm_layer=nn.BatchNorm2d
    ):
        super().__init__()

        if len(layers) != 5:
            raise ValueError(f"The expected number of layers is 5, instead got {len(layers)}")

        # See note in ResidualBlock for the reason behind bias=True
        self.convnormrelu = Conv2dNormActivation(
            3, layers[0], norm_layer=norm_layer, kernel_size=7, stride=strides[0], bias=True
        )

        self.layer1 = self._make_2_blocks(block, layers[0], layers[1], norm_layer=norm_layer, first_stride=strides[1])
        self.layer2 = self._make_2_blocks(block, layers[1], layers[2], norm_layer=norm_layer, first_stride=strides[2])
        self.layer3 = self._make_2_blocks(block, layers[2], layers[3], norm_layer=norm_layer, first_stride=strides[3])

        self.conv = nn.Conv2d(layers[3], layers[4], kernel_size=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

        num_downsamples = len(list(filter(lambda s: s == 2, strides)))
        self.output_dim = layers[-1]
        self.downsample_factor = 2**num_downsamples

    def _make_2_blocks(self, block, in_channels, out_channels, norm_layer, first_stride):
        block1 = block(in_channels, out_channels, norm_layer=norm_layer, stride=first_stride)
        block2 = block(out_channels, out_channels, norm_layer=norm_layer, stride=1)
        return nn.Sequential(block1, block2)

    def forward(self, x):
        x = self.convnormrelu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        x = self.conv(x)

        return x


class MotionEncoder(nn.Module):
    """The motion encoder, part of the update block.

    Takes the current predicted flow and the correlation features as input and returns an encoded version of these.
    """

    def __init__(self, *, in_channels_corr, corr_layers=(256, 192), flow_layers=(128, 64), out_channels=128):
        super().__init__()

        if len(flow_layers) != 2:
            raise ValueError(f"The expected number of flow_layers is 2, instead got {len(flow_layers)}")
        if len(corr_layers) not in (1, 2):
            raise ValueError(f"The number of corr_layers should be 1 or 2, instead got {len(corr_layers)}")

        self.convcorr1 = Conv2dNormActivation(in_channels_corr, corr_layers[0], norm_layer=None, kernel_size=1)
        if len(corr_layers) == 2:
            self.convcorr2 = Conv2dNormActivation(corr_layers[0], corr_layers[1], norm_layer=None, kernel_size=3)
        else:
            self.convcorr2 = nn.Identity()

        self.convflow1 = Conv2dNormActivation(2, flow_layers[0], norm_layer=None, kernel_size=7)
        self.convflow2 = Conv2dNormActivation(flow_layers[0], flow_layers[1], norm_layer=None, kernel_size=3)

        # out_channels - 2 because we cat the flow (2 channels) at the end
        self.conv = Conv2dNormActivation(
            corr_layers[-1] + flow_layers[-1], out_channels - 2, norm_layer=None, kernel_size=3
        )

        self.out_channels = out_channels

    def forward(self, flow, corr_features):
        corr = self.convcorr1(corr_features)
        corr = self.convcorr2(corr)

        flow_orig = flow
        flow = self.convflow1(flow)
        flow = self.convflow2(flow)

        corr_flow = torch.cat([corr, flow], dim=1)
        corr_flow = self.conv(corr_flow)
        return torch.cat([corr_flow, flow_orig], dim=1)


class ConvGRU(nn.Module):
    """Convolutional Gru unit."""

    def __init__(self, *, input_size, hidden_size, kernel_size, padding):
        super().__init__()
        self.convz = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)
        self.convr = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)
        self.convq = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)

    def forward(self, h, x):
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz(hx))
        r = torch.sigmoid(self.convr(hx))
        q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))
        h = (1 - z) * h + z * q
        return h


def _pass_through_h(h, _):
    # Declared here for torchscript
    return h


class RecurrentBlock(nn.Module):
    """Recurrent block, part of the update block.

    Takes the current hidden state and the concatenation of (motion encoder output, context) as input.
    Returns an updated hidden state.
    """

    def __init__(self, *, input_size, hidden_size, kernel_size=((1, 5), (5, 1)), padding=((0, 2), (2, 0))):
        super().__init__()

        if len(kernel_size) != len(padding):
            raise ValueError(
                f"kernel_size should have the same length as padding, instead got len(kernel_size) = {len(kernel_size)} and len(padding) = {len(padding)}"
            )
        if len(kernel_size) not in (1, 2):
            raise ValueError(f"kernel_size should either 1 or 2, instead got {len(kernel_size)}")

        self.convgru1 = ConvGRU(
            input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[0], padding=padding[0]
        )
        if len(kernel_size) == 2:
            self.convgru2 = ConvGRU(
                input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[1], padding=padding[1]
            )
        else:
            self.convgru2 = _pass_through_h

        self.hidden_size = hidden_size

    def forward(self, h, x):
        h = self.convgru1(h, x)
        h = self.convgru2(h, x)
        return h


class FlowHead(nn.Module):
    """Flow head, part of the update block.

    Takes the hidden state of the recurrent unit as input, and outputs the predicted "delta flow".
    """

    def __init__(self, *, in_channels, hidden_size):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, hidden_size, 3, padding=1)
        self.conv2 = nn.Conv2d(hidden_size, 2, 3, padding=1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        return self.conv2(self.relu(self.conv1(x)))


class UpdateBlock(nn.Module):
    """The update block which contains the motion encoder, the recurrent block, and the flow head.

    It must expose a ``hidden_state_size`` attribute which is the hidden state size of its recurrent block.
    """

    def __init__(self, *, motion_encoder, recurrent_block, flow_head):
        super().__init__()
        self.motion_encoder = motion_encoder
        self.recurrent_block = recurrent_block
        self.flow_head = flow_head

        self.hidden_state_size = recurrent_block.hidden_size

    def forward(self, hidden_state, context, corr_features, flow):
        motion_features = self.motion_encoder(flow, corr_features)
        x = torch.cat([context, motion_features], dim=1)

        hidden_state = self.recurrent_block(hidden_state, x)
        delta_flow = self.flow_head(hidden_state)
        return hidden_state, delta_flow


class MaskPredictor(nn.Module):
    """Mask predictor to be used when upsampling the predicted flow.

    It takes the hidden state of the recurrent unit as input and outputs the mask.
    This is not used in the raft-small model.
    """

    def __init__(self, *, in_channels, hidden_size, multiplier=0.25):
        super().__init__()
        self.convrelu = Conv2dNormActivation(in_channels, hidden_size, norm_layer=None, kernel_size=3)
        # 8 * 8 * 9 because the predicted flow is downsampled by 8, from the downsampling of the initial FeatureEncoder
        # and we interpolate with all 9 surrounding neighbors. See paper and appendix B.
        self.conv = nn.Conv2d(hidden_size, 8 * 8 * 9, 1, padding=0)

        # In the original code, they use a factor of 0.25 to "downweight the gradients" of that branch.
        # See e.g. https://github.com/princeton-vl/RAFT/issues/119#issuecomment-953950419
        # or https://github.com/princeton-vl/RAFT/issues/24.
        # It doesn't seem to affect epe significantly and can likely be set to 1.
        self.multiplier = multiplier

    def forward(self, x):
        x = self.convrelu(x)
        x = self.conv(x)
        return self.multiplier * x


class CorrBlock(nn.Module):
    """The correlation block.

    Creates a correlation pyramid with ``num_levels`` levels from the outputs of the feature encoder,
    and then indexes from this pyramid to create correlation features.
    The "indexing" of a given centroid pixel x' is done by concatenating its surrounding neighbors that
    are within a ``radius``, according to the infinity norm (see paper section 3.2).
    Note: typo in the paper, it should be infinity norm, not 1-norm.
    """

    def __init__(self, *, num_levels: int = 4, radius: int = 4):
        super().__init__()
        self.num_levels = num_levels
        self.radius = radius

        self.corr_pyramid: List[Tensor] = [torch.tensor(0)]  # useless, but torchscript is otherwise confused :')

        # The neighborhood of a centroid pixel x' is {x' + delta, ||delta||_inf <= radius}
        # so it's a square surrounding x', and its sides have a length of 2 * radius + 1
        # The paper claims that it's ||.||_1 instead of ||.||_inf but it's a typo:
        # https://github.com/princeton-vl/RAFT/issues/122
        self.out_channels = num_levels * (2 * radius + 1) ** 2

    def build_pyramid(self, fmap1, fmap2):
        """Build the correlation pyramid from two feature maps.

        The correlation volume is first computed as the dot product of each pair (pixel_in_fmap1, pixel_in_fmap2)
        The last 2 dimensions of the correlation volume are then pooled num_levels times at different resolutions
        to build the correlation pyramid.
        """

        if fmap1.shape != fmap2.shape:
            raise ValueError(
                f"Input feature maps should have the same shape, instead got {fmap1.shape} (fmap1.shape) != {fmap2.shape} (fmap2.shape)"
            )
        corr_volume = self._compute_corr_volume(fmap1, fmap2)

        batch_size, h, w, num_channels, _, _ = corr_volume.shape  # _, _ = h, w
        corr_volume = corr_volume.reshape(batch_size * h * w, num_channels, h, w)
        self.corr_pyramid = [corr_volume]
        for _ in range(self.num_levels - 1):
            corr_volume = F.avg_pool2d(corr_volume, kernel_size=2, stride=2)
            self.corr_pyramid.append(corr_volume)

    def index_pyramid(self, centroids_coords):
        """Return correlation features by indexing from the pyramid."""
        neighborhood_side_len = 2 * self.radius + 1  # see note in __init__ about out_channels
        di = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
        dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
        delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device)
        delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2)

        batch_size, _, h, w = centroids_coords.shape  # _ = 2
        centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2)

        indexed_pyramid = []
        for corr_volume in self.corr_pyramid:
            sampling_coords = centroids_coords + delta  # end shape is (batch_size * h * w, side_len, side_len, 2)
            indexed_corr_volume = grid_sample(corr_volume, sampling_coords, align_corners=True, mode="bilinear").view(
                batch_size, h, w, -1
            )
            indexed_pyramid.append(indexed_corr_volume)
            centroids_coords = centroids_coords / 2

        corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous()

        expected_output_shape = (batch_size, self.out_channels, h, w)
        if corr_features.shape != expected_output_shape:
            raise ValueError(
                f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}"
            )

        return corr_features

    def _compute_corr_volume(self, fmap1, fmap2):
        batch_size, num_channels, h, w = fmap1.shape
        fmap1 = fmap1.view(batch_size, num_channels, h * w)
        fmap2 = fmap2.view(batch_size, num_channels, h * w)

        corr = torch.matmul(fmap1.transpose(1, 2), fmap2)
        corr = corr.view(batch_size, h, w, 1, h, w)
        return corr / torch.sqrt(torch.tensor(num_channels))


class RAFT(nn.Module):
    def __init__(self, *, feature_encoder, context_encoder, corr_block, update_block, mask_predictor=None):
        """RAFT model from
        `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_.

        args:
            feature_encoder (nn.Module): The feature encoder. It must downsample the input by 8.
                Its input is the concatenation of ``image1`` and ``image2``.
            context_encoder (nn.Module): The context encoder. It must downsample the input by 8.
                Its input is ``image1``. As in the original implementation, its output will be split into 2 parts:

                - one part will be used as the actual "context", passed to the recurrent unit of the ``update_block``
                - one part will be used to initialize the hidden state of the of the recurrent unit of
                  the ``update_block``

                These 2 parts are split according to the ``hidden_state_size`` of the ``update_block``, so the output
                of the ``context_encoder`` must be strictly greater than ``hidden_state_size``.

            corr_block (nn.Module): The correlation block, which creates a correlation pyramid from the output of the
                ``feature_encoder``, and then indexes from this pyramid to create correlation features. It must expose
                2 methods:

                - a ``build_pyramid`` method that takes ``feature_map_1`` and ``feature_map_2`` as input (these are the
                  output of the ``feature_encoder``).
                - a ``index_pyramid`` method that takes the coordinates of the centroid pixels as input, and returns
                  the correlation features. See paper section 3.2.

                It must expose an ``out_channels`` attribute.

            update_block (nn.Module): The update block, which contains the motion encoder, the recurrent unit, and the
                flow head. It takes as input the hidden state of its recurrent unit, the context, the correlation
                features, and the current predicted flow. It outputs an updated hidden state, and the ``delta_flow``
                prediction (see paper appendix A). It must expose a ``hidden_state_size`` attribute.
            mask_predictor (nn.Module, optional): Predicts the mask that will be used to upsample the predicted flow.
                The output channel must be 8 * 8 * 9 - see paper section 3.3, and Appendix B.
                If ``None`` (default), the flow is upsampled using interpolation.
        """
        super().__init__()
        _log_api_usage_once(self)

        self.feature_encoder = feature_encoder
        self.context_encoder = context_encoder
        self.corr_block = corr_block
        self.update_block = update_block

        self.mask_predictor = mask_predictor

        if not hasattr(self.update_block, "hidden_state_size"):
            raise ValueError("The update_block parameter should expose a 'hidden_state_size' attribute.")

    def forward(self, image1, image2, num_flow_updates: int = 12):

        batch_size, _, h, w = image1.shape
        if (h, w) != image2.shape[-2:]:
            raise ValueError(f"input images should have the same shape, instead got ({h}, {w}) != {image2.shape[-2:]}")
        if not (h % 8 == 0) and (w % 8 == 0):
            raise ValueError(f"input image H and W should be divisible by 8, insted got {h} (h) and {w} (w)")

        fmaps = self.feature_encoder(torch.cat([image1, image2], dim=0))
        fmap1, fmap2 = torch.chunk(fmaps, chunks=2, dim=0)
        if fmap1.shape[-2:] != (h // 8, w // 8):
            raise ValueError("The feature encoder should downsample H and W by 8")

        self.corr_block.build_pyramid(fmap1, fmap2)

        context_out = self.context_encoder(image1)
        if context_out.shape[-2:] != (h // 8, w // 8):
            raise ValueError("The context encoder should downsample H and W by 8")

        # As in the original paper, the actual output of the context encoder is split in 2 parts:
        # - one part is used to initialize the hidden state of the recurent units of the update block
        # - the rest is the "actual" context.
        hidden_state_size = self.update_block.hidden_state_size
        out_channels_context = context_out.shape[1] - hidden_state_size
        if out_channels_context <= 0:
            raise ValueError(
                f"The context encoder outputs {context_out.shape[1]} channels, but it should have at strictly more than hidden_state={hidden_state_size} channels"
            )
        hidden_state, context = torch.split(context_out, [hidden_state_size, out_channels_context], dim=1)
        hidden_state = torch.tanh(hidden_state)
        context = F.relu(context)

        coords0 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device)
        coords1 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device)

        flow_predictions = []
        for _ in range(num_flow_updates):
            coords1 = coords1.detach()  # Don't backpropagate gradients through this branch, see paper
            corr_features = self.corr_block.index_pyramid(centroids_coords=coords1)

            flow = coords1 - coords0
            hidden_state, delta_flow = self.update_block(hidden_state, context, corr_features, flow)

            coords1 = coords1 + delta_flow

            up_mask = None if self.mask_predictor is None else self.mask_predictor(hidden_state)
            upsampled_flow = upsample_flow(flow=(coords1 - coords0), up_mask=up_mask)
            flow_predictions.append(upsampled_flow)

        return flow_predictions


_COMMON_META = {
    "min_size": (128, 128),
}


class Raft_Large_Weights(WeightsEnum):
    """The metrics reported here are as follows.

    ``epe`` is the "end-point-error" and indicates how far (in pixels) the
    predicted flow is from its true value. This is averaged over all pixels
    of all images. ``per_image_epe`` is similar, but the average is different:
    the epe is first computed on each image independently, and then averaged
    over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe")
    in the original paper, and it's only used on Kitti. ``fl-all`` is also a
    Kitti-specific metric, defined by the author of the dataset and used for the
    Kitti leaderboard. It corresponds to the average of pixels whose epe is
    either <3px, or <5% of flow's 2-norm.
    """

    C_T_V1 = Weights(
        # Weights ported from https://github.com/princeton-vl/RAFT
        url="https://download.pytorch.org/models/raft_large_C_T_V1-22a6c225.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/princeton-vl/RAFT",
            "_metrics": {
                "Sintel-Train-Cleanpass": {"epe": 1.4411},
                "Sintel-Train-Finalpass": {"epe": 2.7894},
                "Kitti-Train": {"per_image_epe": 5.0172, "fl_all": 17.4506},
            },
            "_docs": """These weights were ported from the original paper. They
            are trained on :class:`~torchvision.datasets.FlyingChairs` +
            :class:`~torchvision.datasets.FlyingThings3D`.""",
        },
    )

    C_T_V2 = Weights(
        url="https://download.pytorch.org/models/raft_large_C_T_V2-1bb1363a.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
            "_metrics": {
                "Sintel-Train-Cleanpass": {"epe": 1.3822},
                "Sintel-Train-Finalpass": {"epe": 2.7161},
                "Kitti-Train": {"per_image_epe": 4.5118, "fl_all": 16.0679},
            },
            "_docs": """These weights were trained from scratch on
            :class:`~torchvision.datasets.FlyingChairs` +
            :class:`~torchvision.datasets.FlyingThings3D`.""",
        },
    )

    C_T_SKHT_V1 = Weights(
        # Weights ported from https://github.com/princeton-vl/RAFT
        url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V1-0b8c9e55.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/princeton-vl/RAFT",
            "_metrics": {
                "Sintel-Test-Cleanpass": {"epe": 1.94},
                "Sintel-Test-Finalpass": {"epe": 3.18},
            },
            "_docs": """
                These weights were ported from the original paper. They are
                trained on :class:`~torchvision.datasets.FlyingChairs` +
                :class:`~torchvision.datasets.FlyingThings3D` and fine-tuned on
                Sintel. The Sintel fine-tuning step is a combination of
                :class:`~torchvision.datasets.Sintel`,
                :class:`~torchvision.datasets.KittiFlow`,
                :class:`~torchvision.datasets.HD1K`, and
                :class:`~torchvision.datasets.FlyingThings3D` (clean pass).
            """,
        },
    )

    C_T_SKHT_V2 = Weights(
        url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V2-ff5fadd5.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
            "_metrics": {
                "Sintel-Test-Cleanpass": {"epe": 1.819},
                "Sintel-Test-Finalpass": {"epe": 3.067},
            },
            "_docs": """
                These weights were trained from scratch. They are
                pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
                :class:`~torchvision.datasets.FlyingThings3D` and then
                fine-tuned on Sintel. The Sintel fine-tuning step is a
                combination of :class:`~torchvision.datasets.Sintel`,
                :class:`~torchvision.datasets.KittiFlow`,
                :class:`~torchvision.datasets.HD1K`, and
                :class:`~torchvision.datasets.FlyingThings3D` (clean pass).
            """,
        },
    )

    C_T_SKHT_K_V1 = Weights(
        # Weights ported from https://github.com/princeton-vl/RAFT
        url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V1-4a6a5039.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/princeton-vl/RAFT",
            "_metrics": {
                "Kitti-Test": {"fl_all": 5.10},
            },
            "_docs": """
                These weights were ported from the original paper. They are
                pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
                :class:`~torchvision.datasets.FlyingThings3D`,
                fine-tuned on Sintel, and then fine-tuned on
                :class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning
                step was described above.
            """,
        },
    )

    C_T_SKHT_K_V2 = Weights(
        url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V2-b5c70766.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 5257536,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
            "_metrics": {
                "Kitti-Test": {"fl_all": 5.19},
            },
            "_docs": """
                These weights were trained from scratch. They are
                pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
                :class:`~torchvision.datasets.FlyingThings3D`,
                fine-tuned on Sintel, and then fine-tuned on
                :class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning
                step was described above.
            """,
        },
    )

    DEFAULT = C_T_SKHT_V2


class Raft_Small_Weights(WeightsEnum):
    """The metrics reported here are as follows.

    ``epe`` is the "end-point-error" and indicates how far (in pixels) the
    predicted flow is from its true value. This is averaged over all pixels
    of all images. ``per_image_epe`` is similar, but the average is different:
    the epe is first computed on each image independently, and then averaged
    over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe")
    in the original paper, and it's only used on Kitti. ``fl-all`` is also a
    Kitti-specific metric, defined by the author of the dataset and used for the
    Kitti leaderboard. It corresponds to the average of pixels whose epe is
    either <3px, or <5% of flow's 2-norm.
    """

    C_T_V1 = Weights(
        # Weights ported from https://github.com/princeton-vl/RAFT
        url="https://download.pytorch.org/models/raft_small_C_T_V1-ad48884c.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 990162,
            "recipe": "https://github.com/princeton-vl/RAFT",
            "_metrics": {
                "Sintel-Train-Cleanpass": {"epe": 2.1231},
                "Sintel-Train-Finalpass": {"epe": 3.2790},
                "Kitti-Train": {"per_image_epe": 7.6557, "fl_all": 25.2801},
            },
            "_docs": """These weights were ported from the original paper. They
            are trained on :class:`~torchvision.datasets.FlyingChairs` +
            :class:`~torchvision.datasets.FlyingThings3D`.""",
        },
    )
    C_T_V2 = Weights(
        url="https://download.pytorch.org/models/raft_small_C_T_V2-01064c6d.pth",
        transforms=OpticalFlow,
        meta={
            **_COMMON_META,
            "num_params": 990162,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
            "_metrics": {
                "Sintel-Train-Cleanpass": {"epe": 1.9901},
                "Sintel-Train-Finalpass": {"epe": 3.2831},
                "Kitti-Train": {"per_image_epe": 7.5978, "fl_all": 25.2369},
            },
            "_docs": """These weights were trained from scratch on
            :class:`~torchvision.datasets.FlyingChairs` +
            :class:`~torchvision.datasets.FlyingThings3D`.""",
        },
    )

    DEFAULT = C_T_V2


def _raft(
    *,
    weights=None,
    progress=False,
    # Feature encoder
    feature_encoder_layers,
    feature_encoder_block,
    feature_encoder_norm_layer,
    # Context encoder
    context_encoder_layers,
    context_encoder_block,
    context_encoder_norm_layer,
    # Correlation block
    corr_block_num_levels,
    corr_block_radius,
    # Motion encoder
    motion_encoder_corr_layers,
    motion_encoder_flow_layers,
    motion_encoder_out_channels,
    # Recurrent block
    recurrent_block_hidden_state_size,
    recurrent_block_kernel_size,
    recurrent_block_padding,
    # Flow Head
    flow_head_hidden_size,
    # Mask predictor
    use_mask_predictor,
    **kwargs,
):
    feature_encoder = kwargs.pop("feature_encoder", None) or FeatureEncoder(
        block=feature_encoder_block, layers=feature_encoder_layers, norm_layer=feature_encoder_norm_layer
    )
    context_encoder = kwargs.pop("context_encoder", None) or FeatureEncoder(
        block=context_encoder_block, layers=context_encoder_layers, norm_layer=context_encoder_norm_layer
    )

    corr_block = kwargs.pop("corr_block", None) or CorrBlock(num_levels=corr_block_num_levels, radius=corr_block_radius)

    update_block = kwargs.pop("update_block", None)
    if update_block is None:
        motion_encoder = MotionEncoder(
            in_channels_corr=corr_block.out_channels,
            corr_layers=motion_encoder_corr_layers,
            flow_layers=motion_encoder_flow_layers,
            out_channels=motion_encoder_out_channels,
        )

        # See comments in forward pass of RAFT class about why we split the output of the context encoder
        out_channels_context = context_encoder_layers[-1] - recurrent_block_hidden_state_size
        recurrent_block = RecurrentBlock(
            input_size=motion_encoder.out_channels + out_channels_context,
            hidden_size=recurrent_block_hidden_state_size,
            kernel_size=recurrent_block_kernel_size,
            padding=recurrent_block_padding,
        )

        flow_head = FlowHead(in_channels=recurrent_block_hidden_state_size, hidden_size=flow_head_hidden_size)

        update_block = UpdateBlock(motion_encoder=motion_encoder, recurrent_block=recurrent_block, flow_head=flow_head)

    mask_predictor = kwargs.pop("mask_predictor", None)
    if mask_predictor is None and use_mask_predictor:
        mask_predictor = MaskPredictor(
            in_channels=recurrent_block_hidden_state_size,
            hidden_size=256,
            multiplier=0.25,  # See comment in MaskPredictor about this
        )

    model = RAFT(
        feature_encoder=feature_encoder,
        context_encoder=context_encoder,
        corr_block=corr_block,
        update_block=update_block,
        mask_predictor=mask_predictor,
        **kwargs,  # not really needed, all params should be consumed by now
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

    return model


@register_model()
@handle_legacy_interface(weights=("pretrained", Raft_Large_Weights.C_T_SKHT_V2))
def raft_large(*, weights: Optional[Raft_Large_Weights] = None, progress=True, **kwargs) -> RAFT:
    """RAFT model from
    `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_.

    Please see the example below for a tutorial on how to use this model.

    Args:
        weights(:class:`~torchvision.models.optical_flow.Raft_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.optical_flow.Raft_Large_Weights`
            below for more details, and possible values. By default, no
            pre-trained weights are used.
        progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.optical_flow.Raft_Large_Weights
        :members:
    """

    weights = Raft_Large_Weights.verify(weights)

    return _raft(
        weights=weights,
        progress=progress,
        # Feature encoder
        feature_encoder_layers=(64, 64, 96, 128, 256),
        feature_encoder_block=ResidualBlock,
        feature_encoder_norm_layer=InstanceNorm2d,
        # Context encoder
        context_encoder_layers=(64, 64, 96, 128, 256),
        context_encoder_block=ResidualBlock,
        context_encoder_norm_layer=BatchNorm2d,
        # Correlation block
        corr_block_num_levels=4,
        corr_block_radius=4,
        # Motion encoder
        motion_encoder_corr_layers=(256, 192),
        motion_encoder_flow_layers=(128, 64),
        motion_encoder_out_channels=128,
        # Recurrent block
        recurrent_block_hidden_state_size=128,
        recurrent_block_kernel_size=((1, 5), (5, 1)),
        recurrent_block_padding=((0, 2), (2, 0)),
        # Flow head
        flow_head_hidden_size=256,
        # Mask predictor
        use_mask_predictor=True,
        **kwargs,
    )


@register_model()
@handle_legacy_interface(weights=("pretrained", Raft_Small_Weights.C_T_V2))
def raft_small(*, weights: Optional[Raft_Small_Weights] = None, progress=True, **kwargs) -> RAFT:
    """RAFT "small" model from
    `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`__.

    Please see the example below for a tutorial on how to use this model.

    Args:
        weights(:class:`~torchvision.models.optical_flow.Raft_Small_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.optical_flow.Raft_Small_Weights`
            below for more details, and possible values. By default, no
            pre-trained weights are used.
        progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.optical_flow.Raft_Small_Weights
        :members:
    """
    weights = Raft_Small_Weights.verify(weights)

    return _raft(
        weights=weights,
        progress=progress,
        # Feature encoder
        feature_encoder_layers=(32, 32, 64, 96, 128),
        feature_encoder_block=BottleneckBlock,
        feature_encoder_norm_layer=InstanceNorm2d,
        # Context encoder
        context_encoder_layers=(32, 32, 64, 96, 160),
        context_encoder_block=BottleneckBlock,
        context_encoder_norm_layer=None,
        # Correlation block
        corr_block_num_levels=4,
        corr_block_radius=3,
        # Motion encoder
        motion_encoder_corr_layers=(96,),
        motion_encoder_flow_layers=(64, 32),
        motion_encoder_out_channels=82,
        # Recurrent block
        recurrent_block_hidden_state_size=96,
        recurrent_block_kernel_size=(3,),
        recurrent_block_padding=(1,),
        # Flow head
        flow_head_hidden_size=128,
        # Mask predictor
        use_mask_predictor=False,
        **kwargs,
    )