1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn.modules.instancenorm import InstanceNorm2d
from torchvision.ops import Conv2dNormActivation
from ...transforms._presets import OpticalFlow
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._utils import handle_legacy_interface
from ._utils import grid_sample, make_coords_grid, upsample_flow
__all__ = (
"RAFT",
"raft_large",
"raft_small",
"Raft_Large_Weights",
"Raft_Small_Weights",
)
class ResidualBlock(nn.Module):
"""Slightly modified Residual block with extra relu and biases."""
def __init__(self, in_channels, out_channels, *, norm_layer, stride=1, always_project: bool = False):
super().__init__()
# Note regarding bias=True:
# Usually we can pass bias=False in conv layers followed by a norm layer.
# But in the RAFT training reference, the BatchNorm2d layers are only activated for the first dataset,
# and frozen for the rest of the training process (i.e. set as eval()). The bias term is thus still useful
# for the rest of the datasets. Technically, we could remove the bias for other norm layers like Instance norm
# because these aren't frozen, but we don't bother (also, we woudn't be able to load the original weights).
self.convnormrelu1 = Conv2dNormActivation(
in_channels, out_channels, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True
)
self.convnormrelu2 = Conv2dNormActivation(
out_channels, out_channels, norm_layer=norm_layer, kernel_size=3, bias=True
)
# make mypy happy
self.downsample: nn.Module
if stride == 1 and not always_project:
self.downsample = nn.Identity()
else:
self.downsample = Conv2dNormActivation(
in_channels,
out_channels,
norm_layer=norm_layer,
kernel_size=1,
stride=stride,
bias=True,
activation_layer=None,
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
y = x
y = self.convnormrelu1(y)
y = self.convnormrelu2(y)
x = self.downsample(x)
return self.relu(x + y)
class BottleneckBlock(nn.Module):
"""Slightly modified BottleNeck block (extra relu and biases)"""
def __init__(self, in_channels, out_channels, *, norm_layer, stride=1):
super().__init__()
# See note in ResidualBlock for the reason behind bias=True
self.convnormrelu1 = Conv2dNormActivation(
in_channels, out_channels // 4, norm_layer=norm_layer, kernel_size=1, bias=True
)
self.convnormrelu2 = Conv2dNormActivation(
out_channels // 4, out_channels // 4, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True
)
self.convnormrelu3 = Conv2dNormActivation(
out_channels // 4, out_channels, norm_layer=norm_layer, kernel_size=1, bias=True
)
self.relu = nn.ReLU(inplace=True)
if stride == 1:
self.downsample = nn.Identity()
else:
self.downsample = Conv2dNormActivation(
in_channels,
out_channels,
norm_layer=norm_layer,
kernel_size=1,
stride=stride,
bias=True,
activation_layer=None,
)
def forward(self, x):
y = x
y = self.convnormrelu1(y)
y = self.convnormrelu2(y)
y = self.convnormrelu3(y)
x = self.downsample(x)
return self.relu(x + y)
class FeatureEncoder(nn.Module):
"""The feature encoder, used both as the actual feature encoder, and as the context encoder.
It must downsample its input by 8.
"""
def __init__(
self, *, block=ResidualBlock, layers=(64, 64, 96, 128, 256), strides=(2, 1, 2, 2), norm_layer=nn.BatchNorm2d
):
super().__init__()
if len(layers) != 5:
raise ValueError(f"The expected number of layers is 5, instead got {len(layers)}")
# See note in ResidualBlock for the reason behind bias=True
self.convnormrelu = Conv2dNormActivation(
3, layers[0], norm_layer=norm_layer, kernel_size=7, stride=strides[0], bias=True
)
self.layer1 = self._make_2_blocks(block, layers[0], layers[1], norm_layer=norm_layer, first_stride=strides[1])
self.layer2 = self._make_2_blocks(block, layers[1], layers[2], norm_layer=norm_layer, first_stride=strides[2])
self.layer3 = self._make_2_blocks(block, layers[2], layers[3], norm_layer=norm_layer, first_stride=strides[3])
self.conv = nn.Conv2d(layers[3], layers[4], kernel_size=1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d)):
if m.weight is not None:
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
num_downsamples = len(list(filter(lambda s: s == 2, strides)))
self.output_dim = layers[-1]
self.downsample_factor = 2**num_downsamples
def _make_2_blocks(self, block, in_channels, out_channels, norm_layer, first_stride):
block1 = block(in_channels, out_channels, norm_layer=norm_layer, stride=first_stride)
block2 = block(out_channels, out_channels, norm_layer=norm_layer, stride=1)
return nn.Sequential(block1, block2)
def forward(self, x):
x = self.convnormrelu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.conv(x)
return x
class MotionEncoder(nn.Module):
"""The motion encoder, part of the update block.
Takes the current predicted flow and the correlation features as input and returns an encoded version of these.
"""
def __init__(self, *, in_channels_corr, corr_layers=(256, 192), flow_layers=(128, 64), out_channels=128):
super().__init__()
if len(flow_layers) != 2:
raise ValueError(f"The expected number of flow_layers is 2, instead got {len(flow_layers)}")
if len(corr_layers) not in (1, 2):
raise ValueError(f"The number of corr_layers should be 1 or 2, instead got {len(corr_layers)}")
self.convcorr1 = Conv2dNormActivation(in_channels_corr, corr_layers[0], norm_layer=None, kernel_size=1)
if len(corr_layers) == 2:
self.convcorr2 = Conv2dNormActivation(corr_layers[0], corr_layers[1], norm_layer=None, kernel_size=3)
else:
self.convcorr2 = nn.Identity()
self.convflow1 = Conv2dNormActivation(2, flow_layers[0], norm_layer=None, kernel_size=7)
self.convflow2 = Conv2dNormActivation(flow_layers[0], flow_layers[1], norm_layer=None, kernel_size=3)
# out_channels - 2 because we cat the flow (2 channels) at the end
self.conv = Conv2dNormActivation(
corr_layers[-1] + flow_layers[-1], out_channels - 2, norm_layer=None, kernel_size=3
)
self.out_channels = out_channels
def forward(self, flow, corr_features):
corr = self.convcorr1(corr_features)
corr = self.convcorr2(corr)
flow_orig = flow
flow = self.convflow1(flow)
flow = self.convflow2(flow)
corr_flow = torch.cat([corr, flow], dim=1)
corr_flow = self.conv(corr_flow)
return torch.cat([corr_flow, flow_orig], dim=1)
class ConvGRU(nn.Module):
"""Convolutional Gru unit."""
def __init__(self, *, input_size, hidden_size, kernel_size, padding):
super().__init__()
self.convz = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)
self.convr = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)
self.convq = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding)
def forward(self, h, x):
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz(hx))
r = torch.sigmoid(self.convr(hx))
q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))
h = (1 - z) * h + z * q
return h
def _pass_through_h(h, _):
# Declared here for torchscript
return h
class RecurrentBlock(nn.Module):
"""Recurrent block, part of the update block.
Takes the current hidden state and the concatenation of (motion encoder output, context) as input.
Returns an updated hidden state.
"""
def __init__(self, *, input_size, hidden_size, kernel_size=((1, 5), (5, 1)), padding=((0, 2), (2, 0))):
super().__init__()
if len(kernel_size) != len(padding):
raise ValueError(
f"kernel_size should have the same length as padding, instead got len(kernel_size) = {len(kernel_size)} and len(padding) = {len(padding)}"
)
if len(kernel_size) not in (1, 2):
raise ValueError(f"kernel_size should either 1 or 2, instead got {len(kernel_size)}")
self.convgru1 = ConvGRU(
input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[0], padding=padding[0]
)
if len(kernel_size) == 2:
self.convgru2 = ConvGRU(
input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[1], padding=padding[1]
)
else:
self.convgru2 = _pass_through_h
self.hidden_size = hidden_size
def forward(self, h, x):
h = self.convgru1(h, x)
h = self.convgru2(h, x)
return h
class FlowHead(nn.Module):
"""Flow head, part of the update block.
Takes the hidden state of the recurrent unit as input, and outputs the predicted "delta flow".
"""
def __init__(self, *, in_channels, hidden_size):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, hidden_size, 3, padding=1)
self.conv2 = nn.Conv2d(hidden_size, 2, 3, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.conv2(self.relu(self.conv1(x)))
class UpdateBlock(nn.Module):
"""The update block which contains the motion encoder, the recurrent block, and the flow head.
It must expose a ``hidden_state_size`` attribute which is the hidden state size of its recurrent block.
"""
def __init__(self, *, motion_encoder, recurrent_block, flow_head):
super().__init__()
self.motion_encoder = motion_encoder
self.recurrent_block = recurrent_block
self.flow_head = flow_head
self.hidden_state_size = recurrent_block.hidden_size
def forward(self, hidden_state, context, corr_features, flow):
motion_features = self.motion_encoder(flow, corr_features)
x = torch.cat([context, motion_features], dim=1)
hidden_state = self.recurrent_block(hidden_state, x)
delta_flow = self.flow_head(hidden_state)
return hidden_state, delta_flow
class MaskPredictor(nn.Module):
"""Mask predictor to be used when upsampling the predicted flow.
It takes the hidden state of the recurrent unit as input and outputs the mask.
This is not used in the raft-small model.
"""
def __init__(self, *, in_channels, hidden_size, multiplier=0.25):
super().__init__()
self.convrelu = Conv2dNormActivation(in_channels, hidden_size, norm_layer=None, kernel_size=3)
# 8 * 8 * 9 because the predicted flow is downsampled by 8, from the downsampling of the initial FeatureEncoder
# and we interpolate with all 9 surrounding neighbors. See paper and appendix B.
self.conv = nn.Conv2d(hidden_size, 8 * 8 * 9, 1, padding=0)
# In the original code, they use a factor of 0.25 to "downweight the gradients" of that branch.
# See e.g. https://github.com/princeton-vl/RAFT/issues/119#issuecomment-953950419
# or https://github.com/princeton-vl/RAFT/issues/24.
# It doesn't seem to affect epe significantly and can likely be set to 1.
self.multiplier = multiplier
def forward(self, x):
x = self.convrelu(x)
x = self.conv(x)
return self.multiplier * x
class CorrBlock(nn.Module):
"""The correlation block.
Creates a correlation pyramid with ``num_levels`` levels from the outputs of the feature encoder,
and then indexes from this pyramid to create correlation features.
The "indexing" of a given centroid pixel x' is done by concatenating its surrounding neighbors that
are within a ``radius``, according to the infinity norm (see paper section 3.2).
Note: typo in the paper, it should be infinity norm, not 1-norm.
"""
def __init__(self, *, num_levels: int = 4, radius: int = 4):
super().__init__()
self.num_levels = num_levels
self.radius = radius
self.corr_pyramid: List[Tensor] = [torch.tensor(0)] # useless, but torchscript is otherwise confused :')
# The neighborhood of a centroid pixel x' is {x' + delta, ||delta||_inf <= radius}
# so it's a square surrounding x', and its sides have a length of 2 * radius + 1
# The paper claims that it's ||.||_1 instead of ||.||_inf but it's a typo:
# https://github.com/princeton-vl/RAFT/issues/122
self.out_channels = num_levels * (2 * radius + 1) ** 2
def build_pyramid(self, fmap1, fmap2):
"""Build the correlation pyramid from two feature maps.
The correlation volume is first computed as the dot product of each pair (pixel_in_fmap1, pixel_in_fmap2)
The last 2 dimensions of the correlation volume are then pooled num_levels times at different resolutions
to build the correlation pyramid.
"""
if fmap1.shape != fmap2.shape:
raise ValueError(
f"Input feature maps should have the same shape, instead got {fmap1.shape} (fmap1.shape) != {fmap2.shape} (fmap2.shape)"
)
corr_volume = self._compute_corr_volume(fmap1, fmap2)
batch_size, h, w, num_channels, _, _ = corr_volume.shape # _, _ = h, w
corr_volume = corr_volume.reshape(batch_size * h * w, num_channels, h, w)
self.corr_pyramid = [corr_volume]
for _ in range(self.num_levels - 1):
corr_volume = F.avg_pool2d(corr_volume, kernel_size=2, stride=2)
self.corr_pyramid.append(corr_volume)
def index_pyramid(self, centroids_coords):
"""Return correlation features by indexing from the pyramid."""
neighborhood_side_len = 2 * self.radius + 1 # see note in __init__ about out_channels
di = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device)
delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2)
batch_size, _, h, w = centroids_coords.shape # _ = 2
centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2)
indexed_pyramid = []
for corr_volume in self.corr_pyramid:
sampling_coords = centroids_coords + delta # end shape is (batch_size * h * w, side_len, side_len, 2)
indexed_corr_volume = grid_sample(corr_volume, sampling_coords, align_corners=True, mode="bilinear").view(
batch_size, h, w, -1
)
indexed_pyramid.append(indexed_corr_volume)
centroids_coords = centroids_coords / 2
corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous()
expected_output_shape = (batch_size, self.out_channels, h, w)
if corr_features.shape != expected_output_shape:
raise ValueError(
f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}"
)
return corr_features
def _compute_corr_volume(self, fmap1, fmap2):
batch_size, num_channels, h, w = fmap1.shape
fmap1 = fmap1.view(batch_size, num_channels, h * w)
fmap2 = fmap2.view(batch_size, num_channels, h * w)
corr = torch.matmul(fmap1.transpose(1, 2), fmap2)
corr = corr.view(batch_size, h, w, 1, h, w)
return corr / torch.sqrt(torch.tensor(num_channels))
class RAFT(nn.Module):
def __init__(self, *, feature_encoder, context_encoder, corr_block, update_block, mask_predictor=None):
"""RAFT model from
`RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_.
args:
feature_encoder (nn.Module): The feature encoder. It must downsample the input by 8.
Its input is the concatenation of ``image1`` and ``image2``.
context_encoder (nn.Module): The context encoder. It must downsample the input by 8.
Its input is ``image1``. As in the original implementation, its output will be split into 2 parts:
- one part will be used as the actual "context", passed to the recurrent unit of the ``update_block``
- one part will be used to initialize the hidden state of the of the recurrent unit of
the ``update_block``
These 2 parts are split according to the ``hidden_state_size`` of the ``update_block``, so the output
of the ``context_encoder`` must be strictly greater than ``hidden_state_size``.
corr_block (nn.Module): The correlation block, which creates a correlation pyramid from the output of the
``feature_encoder``, and then indexes from this pyramid to create correlation features. It must expose
2 methods:
- a ``build_pyramid`` method that takes ``feature_map_1`` and ``feature_map_2`` as input (these are the
output of the ``feature_encoder``).
- a ``index_pyramid`` method that takes the coordinates of the centroid pixels as input, and returns
the correlation features. See paper section 3.2.
It must expose an ``out_channels`` attribute.
update_block (nn.Module): The update block, which contains the motion encoder, the recurrent unit, and the
flow head. It takes as input the hidden state of its recurrent unit, the context, the correlation
features, and the current predicted flow. It outputs an updated hidden state, and the ``delta_flow``
prediction (see paper appendix A). It must expose a ``hidden_state_size`` attribute.
mask_predictor (nn.Module, optional): Predicts the mask that will be used to upsample the predicted flow.
The output channel must be 8 * 8 * 9 - see paper section 3.3, and Appendix B.
If ``None`` (default), the flow is upsampled using interpolation.
"""
super().__init__()
_log_api_usage_once(self)
self.feature_encoder = feature_encoder
self.context_encoder = context_encoder
self.corr_block = corr_block
self.update_block = update_block
self.mask_predictor = mask_predictor
if not hasattr(self.update_block, "hidden_state_size"):
raise ValueError("The update_block parameter should expose a 'hidden_state_size' attribute.")
def forward(self, image1, image2, num_flow_updates: int = 12):
batch_size, _, h, w = image1.shape
if (h, w) != image2.shape[-2:]:
raise ValueError(f"input images should have the same shape, instead got ({h}, {w}) != {image2.shape[-2:]}")
if not (h % 8 == 0) and (w % 8 == 0):
raise ValueError(f"input image H and W should be divisible by 8, insted got {h} (h) and {w} (w)")
fmaps = self.feature_encoder(torch.cat([image1, image2], dim=0))
fmap1, fmap2 = torch.chunk(fmaps, chunks=2, dim=0)
if fmap1.shape[-2:] != (h // 8, w // 8):
raise ValueError("The feature encoder should downsample H and W by 8")
self.corr_block.build_pyramid(fmap1, fmap2)
context_out = self.context_encoder(image1)
if context_out.shape[-2:] != (h // 8, w // 8):
raise ValueError("The context encoder should downsample H and W by 8")
# As in the original paper, the actual output of the context encoder is split in 2 parts:
# - one part is used to initialize the hidden state of the recurent units of the update block
# - the rest is the "actual" context.
hidden_state_size = self.update_block.hidden_state_size
out_channels_context = context_out.shape[1] - hidden_state_size
if out_channels_context <= 0:
raise ValueError(
f"The context encoder outputs {context_out.shape[1]} channels, but it should have at strictly more than hidden_state={hidden_state_size} channels"
)
hidden_state, context = torch.split(context_out, [hidden_state_size, out_channels_context], dim=1)
hidden_state = torch.tanh(hidden_state)
context = F.relu(context)
coords0 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device)
coords1 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device)
flow_predictions = []
for _ in range(num_flow_updates):
coords1 = coords1.detach() # Don't backpropagate gradients through this branch, see paper
corr_features = self.corr_block.index_pyramid(centroids_coords=coords1)
flow = coords1 - coords0
hidden_state, delta_flow = self.update_block(hidden_state, context, corr_features, flow)
coords1 = coords1 + delta_flow
up_mask = None if self.mask_predictor is None else self.mask_predictor(hidden_state)
upsampled_flow = upsample_flow(flow=(coords1 - coords0), up_mask=up_mask)
flow_predictions.append(upsampled_flow)
return flow_predictions
_COMMON_META = {
"min_size": (128, 128),
}
class Raft_Large_Weights(WeightsEnum):
"""The metrics reported here are as follows.
``epe`` is the "end-point-error" and indicates how far (in pixels) the
predicted flow is from its true value. This is averaged over all pixels
of all images. ``per_image_epe`` is similar, but the average is different:
the epe is first computed on each image independently, and then averaged
over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe")
in the original paper, and it's only used on Kitti. ``fl-all`` is also a
Kitti-specific metric, defined by the author of the dataset and used for the
Kitti leaderboard. It corresponds to the average of pixels whose epe is
either <3px, or <5% of flow's 2-norm.
"""
C_T_V1 = Weights(
# Weights ported from https://github.com/princeton-vl/RAFT
url="https://download.pytorch.org/models/raft_large_C_T_V1-22a6c225.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/princeton-vl/RAFT",
"_metrics": {
"Sintel-Train-Cleanpass": {"epe": 1.4411},
"Sintel-Train-Finalpass": {"epe": 2.7894},
"Kitti-Train": {"per_image_epe": 5.0172, "fl_all": 17.4506},
},
"_docs": """These weights were ported from the original paper. They
are trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`.""",
},
)
C_T_V2 = Weights(
url="https://download.pytorch.org/models/raft_large_C_T_V2-1bb1363a.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
"_metrics": {
"Sintel-Train-Cleanpass": {"epe": 1.3822},
"Sintel-Train-Finalpass": {"epe": 2.7161},
"Kitti-Train": {"per_image_epe": 4.5118, "fl_all": 16.0679},
},
"_docs": """These weights were trained from scratch on
:class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`.""",
},
)
C_T_SKHT_V1 = Weights(
# Weights ported from https://github.com/princeton-vl/RAFT
url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V1-0b8c9e55.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/princeton-vl/RAFT",
"_metrics": {
"Sintel-Test-Cleanpass": {"epe": 1.94},
"Sintel-Test-Finalpass": {"epe": 3.18},
},
"_docs": """
These weights were ported from the original paper. They are
trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D` and fine-tuned on
Sintel. The Sintel fine-tuning step is a combination of
:class:`~torchvision.datasets.Sintel`,
:class:`~torchvision.datasets.KittiFlow`,
:class:`~torchvision.datasets.HD1K`, and
:class:`~torchvision.datasets.FlyingThings3D` (clean pass).
""",
},
)
C_T_SKHT_V2 = Weights(
url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V2-ff5fadd5.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
"_metrics": {
"Sintel-Test-Cleanpass": {"epe": 1.819},
"Sintel-Test-Finalpass": {"epe": 3.067},
},
"_docs": """
These weights were trained from scratch. They are
pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D` and then
fine-tuned on Sintel. The Sintel fine-tuning step is a
combination of :class:`~torchvision.datasets.Sintel`,
:class:`~torchvision.datasets.KittiFlow`,
:class:`~torchvision.datasets.HD1K`, and
:class:`~torchvision.datasets.FlyingThings3D` (clean pass).
""",
},
)
C_T_SKHT_K_V1 = Weights(
# Weights ported from https://github.com/princeton-vl/RAFT
url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V1-4a6a5039.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/princeton-vl/RAFT",
"_metrics": {
"Kitti-Test": {"fl_all": 5.10},
},
"_docs": """
These weights were ported from the original paper. They are
pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`,
fine-tuned on Sintel, and then fine-tuned on
:class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning
step was described above.
""",
},
)
C_T_SKHT_K_V2 = Weights(
url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V2-b5c70766.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 5257536,
"recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
"_metrics": {
"Kitti-Test": {"fl_all": 5.19},
},
"_docs": """
These weights were trained from scratch. They are
pre-trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`,
fine-tuned on Sintel, and then fine-tuned on
:class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning
step was described above.
""",
},
)
DEFAULT = C_T_SKHT_V2
class Raft_Small_Weights(WeightsEnum):
"""The metrics reported here are as follows.
``epe`` is the "end-point-error" and indicates how far (in pixels) the
predicted flow is from its true value. This is averaged over all pixels
of all images. ``per_image_epe`` is similar, but the average is different:
the epe is first computed on each image independently, and then averaged
over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe")
in the original paper, and it's only used on Kitti. ``fl-all`` is also a
Kitti-specific metric, defined by the author of the dataset and used for the
Kitti leaderboard. It corresponds to the average of pixels whose epe is
either <3px, or <5% of flow's 2-norm.
"""
C_T_V1 = Weights(
# Weights ported from https://github.com/princeton-vl/RAFT
url="https://download.pytorch.org/models/raft_small_C_T_V1-ad48884c.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 990162,
"recipe": "https://github.com/princeton-vl/RAFT",
"_metrics": {
"Sintel-Train-Cleanpass": {"epe": 2.1231},
"Sintel-Train-Finalpass": {"epe": 3.2790},
"Kitti-Train": {"per_image_epe": 7.6557, "fl_all": 25.2801},
},
"_docs": """These weights were ported from the original paper. They
are trained on :class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`.""",
},
)
C_T_V2 = Weights(
url="https://download.pytorch.org/models/raft_small_C_T_V2-01064c6d.pth",
transforms=OpticalFlow,
meta={
**_COMMON_META,
"num_params": 990162,
"recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow",
"_metrics": {
"Sintel-Train-Cleanpass": {"epe": 1.9901},
"Sintel-Train-Finalpass": {"epe": 3.2831},
"Kitti-Train": {"per_image_epe": 7.5978, "fl_all": 25.2369},
},
"_docs": """These weights were trained from scratch on
:class:`~torchvision.datasets.FlyingChairs` +
:class:`~torchvision.datasets.FlyingThings3D`.""",
},
)
DEFAULT = C_T_V2
def _raft(
*,
weights=None,
progress=False,
# Feature encoder
feature_encoder_layers,
feature_encoder_block,
feature_encoder_norm_layer,
# Context encoder
context_encoder_layers,
context_encoder_block,
context_encoder_norm_layer,
# Correlation block
corr_block_num_levels,
corr_block_radius,
# Motion encoder
motion_encoder_corr_layers,
motion_encoder_flow_layers,
motion_encoder_out_channels,
# Recurrent block
recurrent_block_hidden_state_size,
recurrent_block_kernel_size,
recurrent_block_padding,
# Flow Head
flow_head_hidden_size,
# Mask predictor
use_mask_predictor,
**kwargs,
):
feature_encoder = kwargs.pop("feature_encoder", None) or FeatureEncoder(
block=feature_encoder_block, layers=feature_encoder_layers, norm_layer=feature_encoder_norm_layer
)
context_encoder = kwargs.pop("context_encoder", None) or FeatureEncoder(
block=context_encoder_block, layers=context_encoder_layers, norm_layer=context_encoder_norm_layer
)
corr_block = kwargs.pop("corr_block", None) or CorrBlock(num_levels=corr_block_num_levels, radius=corr_block_radius)
update_block = kwargs.pop("update_block", None)
if update_block is None:
motion_encoder = MotionEncoder(
in_channels_corr=corr_block.out_channels,
corr_layers=motion_encoder_corr_layers,
flow_layers=motion_encoder_flow_layers,
out_channels=motion_encoder_out_channels,
)
# See comments in forward pass of RAFT class about why we split the output of the context encoder
out_channels_context = context_encoder_layers[-1] - recurrent_block_hidden_state_size
recurrent_block = RecurrentBlock(
input_size=motion_encoder.out_channels + out_channels_context,
hidden_size=recurrent_block_hidden_state_size,
kernel_size=recurrent_block_kernel_size,
padding=recurrent_block_padding,
)
flow_head = FlowHead(in_channels=recurrent_block_hidden_state_size, hidden_size=flow_head_hidden_size)
update_block = UpdateBlock(motion_encoder=motion_encoder, recurrent_block=recurrent_block, flow_head=flow_head)
mask_predictor = kwargs.pop("mask_predictor", None)
if mask_predictor is None and use_mask_predictor:
mask_predictor = MaskPredictor(
in_channels=recurrent_block_hidden_state_size,
hidden_size=256,
multiplier=0.25, # See comment in MaskPredictor about this
)
model = RAFT(
feature_encoder=feature_encoder,
context_encoder=context_encoder,
corr_block=corr_block,
update_block=update_block,
mask_predictor=mask_predictor,
**kwargs, # not really needed, all params should be consumed by now
)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
@register_model()
@handle_legacy_interface(weights=("pretrained", Raft_Large_Weights.C_T_SKHT_V2))
def raft_large(*, weights: Optional[Raft_Large_Weights] = None, progress=True, **kwargs) -> RAFT:
"""RAFT model from
`RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_.
Please see the example below for a tutorial on how to use this model.
Args:
weights(:class:`~torchvision.models.optical_flow.Raft_Large_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.optical_flow.Raft_Large_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_
for more details about this class.
.. autoclass:: torchvision.models.optical_flow.Raft_Large_Weights
:members:
"""
weights = Raft_Large_Weights.verify(weights)
return _raft(
weights=weights,
progress=progress,
# Feature encoder
feature_encoder_layers=(64, 64, 96, 128, 256),
feature_encoder_block=ResidualBlock,
feature_encoder_norm_layer=InstanceNorm2d,
# Context encoder
context_encoder_layers=(64, 64, 96, 128, 256),
context_encoder_block=ResidualBlock,
context_encoder_norm_layer=BatchNorm2d,
# Correlation block
corr_block_num_levels=4,
corr_block_radius=4,
# Motion encoder
motion_encoder_corr_layers=(256, 192),
motion_encoder_flow_layers=(128, 64),
motion_encoder_out_channels=128,
# Recurrent block
recurrent_block_hidden_state_size=128,
recurrent_block_kernel_size=((1, 5), (5, 1)),
recurrent_block_padding=((0, 2), (2, 0)),
# Flow head
flow_head_hidden_size=256,
# Mask predictor
use_mask_predictor=True,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", Raft_Small_Weights.C_T_V2))
def raft_small(*, weights: Optional[Raft_Small_Weights] = None, progress=True, **kwargs) -> RAFT:
"""RAFT "small" model from
`RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`__.
Please see the example below for a tutorial on how to use this model.
Args:
weights(:class:`~torchvision.models.optical_flow.Raft_Small_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.optical_flow.Raft_Small_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_
for more details about this class.
.. autoclass:: torchvision.models.optical_flow.Raft_Small_Weights
:members:
"""
weights = Raft_Small_Weights.verify(weights)
return _raft(
weights=weights,
progress=progress,
# Feature encoder
feature_encoder_layers=(32, 32, 64, 96, 128),
feature_encoder_block=BottleneckBlock,
feature_encoder_norm_layer=InstanceNorm2d,
# Context encoder
context_encoder_layers=(32, 32, 64, 96, 160),
context_encoder_block=BottleneckBlock,
context_encoder_norm_layer=None,
# Correlation block
corr_block_num_levels=4,
corr_block_radius=3,
# Motion encoder
motion_encoder_corr_layers=(96,),
motion_encoder_flow_layers=(64, 32),
motion_encoder_out_channels=82,
# Recurrent block
recurrent_block_hidden_state_size=96,
recurrent_block_kernel_size=(3,),
recurrent_block_padding=(1,),
# Flow head
flow_head_hidden_size=128,
# Mask predictor
use_mask_predictor=False,
**kwargs,
)
|