1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
|
import warnings
from typing import List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch.nn.functional import conv2d, grid_sample, interpolate, pad as torch_pad
def _is_tensor_a_torch_image(x: Tensor) -> bool:
return x.ndim >= 2
def _assert_image_tensor(img: Tensor) -> None:
if not _is_tensor_a_torch_image(img):
raise TypeError("Tensor is not a torch image.")
def _assert_threshold(img: Tensor, threshold: float) -> None:
bound = 1 if img.is_floating_point() else 255
if threshold > bound:
raise TypeError("Threshold should be less than bound of img.")
def get_dimensions(img: Tensor) -> List[int]:
_assert_image_tensor(img)
channels = 1 if img.ndim == 2 else img.shape[-3]
height, width = img.shape[-2:]
return [channels, height, width]
def get_image_size(img: Tensor) -> List[int]:
# Returns (w, h) of tensor image
_assert_image_tensor(img)
return [img.shape[-1], img.shape[-2]]
def get_image_num_channels(img: Tensor) -> int:
_assert_image_tensor(img)
if img.ndim == 2:
return 1
elif img.ndim > 2:
return img.shape[-3]
raise TypeError(f"Input ndim should be 2 or more. Got {img.ndim}")
def _max_value(dtype: torch.dtype) -> int:
if dtype == torch.uint8:
return 255
elif dtype == torch.int8:
return 127
elif dtype == torch.int16:
return 32767
elif dtype == torch.int32:
return 2147483647
elif dtype == torch.int64:
return 9223372036854775807
else:
return 1
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
c = get_dimensions(img)[0]
if c not in permitted:
raise TypeError(f"Input image tensor permitted channel values are {permitted}, but found {c}")
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
if image.dtype == dtype:
return image
if image.is_floating_point():
# TODO: replace with dtype.is_floating_point when torchscript supports it
if torch.tensor(0, dtype=dtype).is_floating_point():
return image.to(dtype)
# float to int
if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
image.dtype == torch.float64 and dtype == torch.int64
):
msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
raise RuntimeError(msg)
# https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
# For data in the range 0-1, (float * 255).to(uint) is only 255
# when float is exactly 1.0.
# `max + 1 - epsilon` provides more evenly distributed mapping of
# ranges of floats to ints.
eps = 1e-3
max_val = float(_max_value(dtype))
result = image.mul(max_val + 1.0 - eps)
return result.to(dtype)
else:
input_max = float(_max_value(image.dtype))
# int to float
# TODO: replace with dtype.is_floating_point when torchscript supports it
if torch.tensor(0, dtype=dtype).is_floating_point():
image = image.to(dtype)
return image / input_max
output_max = float(_max_value(dtype))
# int to int
if input_max > output_max:
# factor should be forced to int for torch jit script
# otherwise factor is a float and image // factor can produce different results
factor = int((input_max + 1) // (output_max + 1))
image = torch.div(image, factor, rounding_mode="floor")
return image.to(dtype)
else:
# factor should be forced to int for torch jit script
# otherwise factor is a float and image * factor can produce different results
factor = int((output_max + 1) // (input_max + 1))
image = image.to(dtype)
return image * factor
def vflip(img: Tensor) -> Tensor:
_assert_image_tensor(img)
return img.flip(-2)
def hflip(img: Tensor) -> Tensor:
_assert_image_tensor(img)
return img.flip(-1)
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
_assert_image_tensor(img)
_, h, w = get_dimensions(img)
right = left + width
bottom = top + height
if left < 0 or top < 0 or right > w or bottom > h:
padding_ltrb = [
max(-left + min(0, right), 0),
max(-top + min(0, bottom), 0),
max(right - max(w, left), 0),
max(bottom - max(h, top), 0),
]
return pad(img[..., max(top, 0) : bottom, max(left, 0) : right], padding_ltrb, fill=0)
return img[..., top:bottom, left:right]
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
if img.ndim < 3:
raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
_assert_channels(img, [1, 3])
if num_output_channels not in (1, 3):
raise ValueError("num_output_channels should be either 1 or 3")
if img.shape[-3] == 3:
r, g, b = img.unbind(dim=-3)
# This implementation closely follows the TF one:
# https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
l_img = l_img.unsqueeze(dim=-3)
else:
l_img = img.clone()
if num_output_channels == 3:
return l_img.expand(img.shape)
return l_img
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
if brightness_factor < 0:
raise ValueError(f"brightness_factor ({brightness_factor}) is not non-negative.")
_assert_image_tensor(img)
_assert_channels(img, [1, 3])
return _blend(img, torch.zeros_like(img), brightness_factor)
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
if contrast_factor < 0:
raise ValueError(f"contrast_factor ({contrast_factor}) is not non-negative.")
_assert_image_tensor(img)
_assert_channels(img, [3, 1])
c = get_dimensions(img)[0]
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
if c == 3:
mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
else:
mean = torch.mean(img.to(dtype), dim=(-3, -2, -1), keepdim=True)
return _blend(img, mean, contrast_factor)
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].")
if not (isinstance(img, torch.Tensor)):
raise TypeError("Input img should be Tensor image")
_assert_image_tensor(img)
_assert_channels(img, [1, 3])
if get_dimensions(img)[0] == 1: # Match PIL behaviour
return img
orig_dtype = img.dtype
if img.dtype == torch.uint8:
img = img.to(dtype=torch.float32) / 255.0
img = _rgb2hsv(img)
h, s, v = img.unbind(dim=-3)
h = (h + hue_factor) % 1.0
img = torch.stack((h, s, v), dim=-3)
img_hue_adj = _hsv2rgb(img)
if orig_dtype == torch.uint8:
img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)
return img_hue_adj
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
if saturation_factor < 0:
raise ValueError(f"saturation_factor ({saturation_factor}) is not non-negative.")
_assert_image_tensor(img)
_assert_channels(img, [1, 3])
if get_dimensions(img)[0] == 1: # Match PIL behaviour
return img
return _blend(img, rgb_to_grayscale(img), saturation_factor)
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
if not isinstance(img, torch.Tensor):
raise TypeError("Input img should be a Tensor.")
_assert_channels(img, [1, 3])
if gamma < 0:
raise ValueError("Gamma should be a non-negative real number")
result = img
dtype = img.dtype
if not torch.is_floating_point(img):
result = convert_image_dtype(result, torch.float32)
result = (gain * result**gamma).clamp(0, 1)
result = convert_image_dtype(result, dtype)
return result
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
ratio = float(ratio)
bound = 1.0 if img1.is_floating_point() else 255.0
return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
def _rgb2hsv(img: Tensor) -> Tensor:
r, g, b = img.unbind(dim=-3)
# Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
# src/libImaging/Convert.c#L330
maxc = torch.max(img, dim=-3).values
minc = torch.min(img, dim=-3).values
# The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
# from happening in the results, because
# + S channel has division by `maxc`, which is zero only if `maxc = minc`
# + H channel has division by `(maxc - minc)`.
#
# Instead of overwriting NaN afterwards, we just prevent it from occuring so
# we don't need to deal with it in case we save the NaN in a buffer in
# backprop, if it is ever supported, but it doesn't hurt to do so.
eqc = maxc == minc
cr = maxc - minc
# Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
ones = torch.ones_like(maxc)
s = cr / torch.where(eqc, ones, maxc)
# Note that `eqc => maxc = minc = r = g = b`. So the following calculation
# of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
# would not matter what values `rc`, `gc`, and `bc` have here, and thus
# replacing denominator with 1 when `eqc` is fine.
cr_divisor = torch.where(eqc, ones, cr)
rc = (maxc - r) / cr_divisor
gc = (maxc - g) / cr_divisor
bc = (maxc - b) / cr_divisor
hr = (maxc == r) * (bc - gc)
hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
h = hr + hg + hb
h = torch.fmod((h / 6.0 + 1.0), 1.0)
return torch.stack((h, s, maxc), dim=-3)
def _hsv2rgb(img: Tensor) -> Tensor:
h, s, v = img.unbind(dim=-3)
i = torch.floor(h * 6.0)
f = (h * 6.0) - i
i = i.to(dtype=torch.int32)
p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
i = i % 6
mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
a1 = torch.stack((v, q, p, p, t, v), dim=-3)
a2 = torch.stack((t, v, v, q, p, p), dim=-3)
a3 = torch.stack((p, p, t, v, v, q), dim=-3)
a4 = torch.stack((a1, a2, a3), dim=-4)
return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
# padding is left, right, top, bottom
# crop if needed
if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
neg_min_padding = [-min(x, 0) for x in padding]
crop_left, crop_right, crop_top, crop_bottom = neg_min_padding
img = img[..., crop_top : img.shape[-2] - crop_bottom, crop_left : img.shape[-1] - crop_right]
padding = [max(x, 0) for x in padding]
in_sizes = img.size()
_x_indices = [i for i in range(in_sizes[-1])] # [0, 1, 2, 3, ...]
left_indices = [i for i in range(padding[0] - 1, -1, -1)] # e.g. [3, 2, 1, 0]
right_indices = [-(i + 1) for i in range(padding[1])] # e.g. [-1, -2, -3]
x_indices = torch.tensor(left_indices + _x_indices + right_indices, device=img.device)
_y_indices = [i for i in range(in_sizes[-2])]
top_indices = [i for i in range(padding[2] - 1, -1, -1)]
bottom_indices = [-(i + 1) for i in range(padding[3])]
y_indices = torch.tensor(top_indices + _y_indices + bottom_indices, device=img.device)
ndim = img.ndim
if ndim == 3:
return img[:, y_indices[:, None], x_indices[None, :]]
elif ndim == 4:
return img[:, :, y_indices[:, None], x_indices[None, :]]
else:
raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
if isinstance(padding, int):
if torch.jit.is_scripting():
# This maybe unreachable
raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
pad_left = pad_right = pad_top = pad_bottom = padding
elif len(padding) == 1:
pad_left = pad_right = pad_top = pad_bottom = padding[0]
elif len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
else:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
return [pad_left, pad_right, pad_top, pad_bottom]
def pad(
img: Tensor, padding: Union[int, List[int]], fill: Optional[Union[int, float]] = 0, padding_mode: str = "constant"
) -> Tensor:
_assert_image_tensor(img)
if fill is None:
fill = 0
if not isinstance(padding, (int, tuple, list)):
raise TypeError("Got inappropriate padding arg")
if not isinstance(fill, (int, float)):
raise TypeError("Got inappropriate fill arg")
if not isinstance(padding_mode, str):
raise TypeError("Got inappropriate padding_mode arg")
if isinstance(padding, tuple):
padding = list(padding)
if isinstance(padding, list):
# TODO: Jit is failing on loading this op when scripted and saved
# https://github.com/pytorch/pytorch/issues/81100
if len(padding) not in [1, 2, 4]:
raise ValueError(
f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
)
if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
p = _parse_pad_padding(padding)
if padding_mode == "edge":
# remap padding_mode str
padding_mode = "replicate"
elif padding_mode == "symmetric":
# route to another implementation
return _pad_symmetric(img, p)
need_squeeze = False
if img.ndim < 4:
img = img.unsqueeze(dim=0)
need_squeeze = True
out_dtype = img.dtype
need_cast = False
if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
# Here we temporary cast input tensor to float
# until pytorch issue is resolved :
# https://github.com/pytorch/pytorch/issues/40763
need_cast = True
img = img.to(torch.float32)
if padding_mode in ("reflect", "replicate"):
img = torch_pad(img, p, mode=padding_mode)
else:
img = torch_pad(img, p, mode=padding_mode, value=float(fill))
if need_squeeze:
img = img.squeeze(dim=0)
if need_cast:
img = img.to(out_dtype)
return img
def resize(
img: Tensor,
size: List[int],
interpolation: str = "bilinear",
antialias: Optional[bool] = None,
) -> Tensor:
_assert_image_tensor(img)
if isinstance(size, tuple):
size = list(size)
if antialias is None:
antialias = False
if antialias and interpolation not in ["bilinear", "bicubic"]:
raise ValueError("Antialias option is supported for bilinear and bicubic interpolation modes only")
img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
# Define align_corners to avoid warnings
align_corners = False if interpolation in ["bilinear", "bicubic"] else None
img = interpolate(img, size=size, mode=interpolation, align_corners=align_corners, antialias=antialias)
if interpolation == "bicubic" and out_dtype == torch.uint8:
img = img.clamp(min=0, max=255)
img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
return img
def _assert_grid_transform_inputs(
img: Tensor,
matrix: Optional[List[float]],
interpolation: str,
fill: Optional[Union[int, float, List[float]]],
supported_interpolation_modes: List[str],
coeffs: Optional[List[float]] = None,
) -> None:
if not (isinstance(img, torch.Tensor)):
raise TypeError("Input img should be Tensor")
_assert_image_tensor(img)
if matrix is not None and not isinstance(matrix, list):
raise TypeError("Argument matrix should be a list")
if matrix is not None and len(matrix) != 6:
raise ValueError("Argument matrix should have 6 float values")
if coeffs is not None and len(coeffs) != 8:
raise ValueError("Argument coeffs should have 8 float values")
if fill is not None and not isinstance(fill, (int, float, tuple, list)):
warnings.warn("Argument fill should be either int, float, tuple or list")
# Check fill
num_channels = get_dimensions(img)[0]
if fill is not None and isinstance(fill, (tuple, list)) and len(fill) > 1 and len(fill) != num_channels:
msg = (
"The number of elements in 'fill' cannot broadcast to match the number of "
"channels of the image ({} != {})"
)
raise ValueError(msg.format(len(fill), num_channels))
if interpolation not in supported_interpolation_modes:
raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
need_squeeze = False
# make image NCHW
if img.ndim < 4:
img = img.unsqueeze(dim=0)
need_squeeze = True
out_dtype = img.dtype
need_cast = False
if out_dtype not in req_dtypes:
need_cast = True
req_dtype = req_dtypes[0]
img = img.to(req_dtype)
return img, need_cast, need_squeeze, out_dtype
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype) -> Tensor:
if need_squeeze:
img = img.squeeze(dim=0)
if need_cast:
if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
# it is better to round before cast
img = torch.round(img)
img = img.to(out_dtype)
return img
def _apply_grid_transform(
img: Tensor, grid: Tensor, mode: str, fill: Optional[Union[int, float, List[float]]]
) -> Tensor:
img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [grid.dtype])
if img.shape[0] > 1:
# Apply same grid to a batch of images
grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
# Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
if fill is not None:
mask = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
img = torch.cat((img, mask), dim=1)
img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)
# Fill with required color
if fill is not None:
mask = img[:, -1:, :, :] # N * 1 * H * W
img = img[:, :-1, :, :] # N * C * H * W
mask = mask.expand_as(img)
fill_list, len_fill = (fill, len(fill)) if isinstance(fill, (tuple, list)) else ([float(fill)], 1)
fill_img = torch.tensor(fill_list, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
if mode == "nearest":
mask = mask < 0.5
img[mask] = fill_img[mask]
else: # 'bilinear'
img = img * mask + (1.0 - mask) * fill_img
img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
return img
def _gen_affine_grid(
theta: Tensor,
w: int,
h: int,
ow: int,
oh: int,
) -> Tensor:
# https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
# AffineGridGenerator.cpp#L18
# Difference with AffineGridGenerator is that:
# 1) we normalize grid values after applying theta
# 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
d = 0.5
base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
base_grid[..., 0].copy_(x_grid)
y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
base_grid[..., 1].copy_(y_grid)
base_grid[..., 2].fill_(1)
rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
return output_grid.view(1, oh, ow, 2)
def affine(
img: Tensor,
matrix: List[float],
interpolation: str = "nearest",
fill: Optional[Union[int, float, List[float]]] = None,
) -> Tensor:
_assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
shape = img.shape
# grid will be generated on the same device as theta and img
grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
return _apply_grid_transform(img, grid, interpolation, fill=fill)
def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
# Inspired of PIL implementation:
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
# pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
# Points are shifted due to affine matrix torch convention about
# the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
pts = torch.tensor(
[
[-0.5 * w, -0.5 * h, 1.0],
[-0.5 * w, 0.5 * h, 1.0],
[0.5 * w, 0.5 * h, 1.0],
[0.5 * w, -0.5 * h, 1.0],
]
)
theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
new_pts = torch.matmul(pts, theta.T)
min_vals, _ = new_pts.min(dim=0)
max_vals, _ = new_pts.max(dim=0)
# shift points to [0, w] and [0, h] interval to match PIL results
min_vals += torch.tensor((w * 0.5, h * 0.5))
max_vals += torch.tensor((w * 0.5, h * 0.5))
# Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
tol = 1e-4
cmax = torch.ceil((max_vals / tol).trunc_() * tol)
cmin = torch.floor((min_vals / tol).trunc_() * tol)
size = cmax - cmin
return int(size[0]), int(size[1]) # w, h
def rotate(
img: Tensor,
matrix: List[float],
interpolation: str = "nearest",
expand: bool = False,
fill: Optional[Union[int, float, List[float]]] = None,
) -> Tensor:
_assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
w, h = img.shape[-1], img.shape[-2]
ow, oh = _compute_affine_output_size(matrix, w, h) if expand else (w, h)
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
# grid will be generated on the same device as theta and img
grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
return _apply_grid_transform(img, grid, interpolation, fill=fill)
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> Tensor:
# https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
# src/libImaging/Geometry.c#L394
#
# x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
# y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
#
theta1 = torch.tensor(
[[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
)
theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)
d = 0.5
base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
base_grid[..., 0].copy_(x_grid)
y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
base_grid[..., 1].copy_(y_grid)
base_grid[..., 2].fill_(1)
rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))
output_grid = output_grid1 / output_grid2 - 1.0
return output_grid.view(1, oh, ow, 2)
def perspective(
img: Tensor,
perspective_coeffs: List[float],
interpolation: str = "bilinear",
fill: Optional[Union[int, float, List[float]]] = None,
) -> Tensor:
if not (isinstance(img, torch.Tensor)):
raise TypeError("Input img should be Tensor.")
_assert_image_tensor(img)
_assert_grid_transform_inputs(
img,
matrix=None,
interpolation=interpolation,
fill=fill,
supported_interpolation_modes=["nearest", "bilinear"],
coeffs=perspective_coeffs,
)
ow, oh = img.shape[-1], img.shape[-2]
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
return _apply_grid_transform(img, grid, interpolation, fill=fill)
def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
ksize_half = (kernel_size - 1) * 0.5
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
kernel1d = pdf / pdf.sum()
return kernel1d
def _get_gaussian_kernel2d(
kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> Tensor:
kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
return kernel2d
def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
if not (isinstance(img, torch.Tensor)):
raise TypeError(f"img should be Tensor. Got {type(img)}")
_assert_image_tensor(img)
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])
img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
img,
[
kernel.dtype,
],
)
# padding = (left, right, top, bottom)
padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
img = torch_pad(img, padding, mode="reflect")
img = conv2d(img, kernel, groups=img.shape[-3])
img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
return img
def invert(img: Tensor) -> Tensor:
_assert_image_tensor(img)
if img.ndim < 3:
raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
_assert_channels(img, [1, 3])
bound = torch.tensor(1 if img.is_floating_point() else 255, dtype=img.dtype, device=img.device)
return bound - img
def posterize(img: Tensor, bits: int) -> Tensor:
_assert_image_tensor(img)
if img.ndim < 3:
raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
if img.dtype != torch.uint8:
raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
_assert_channels(img, [1, 3])
mask = -int(2 ** (8 - bits)) # JIT-friendly for: ~(2 ** (8 - bits) - 1)
return img & mask
def solarize(img: Tensor, threshold: float) -> Tensor:
_assert_image_tensor(img)
if img.ndim < 3:
raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
_assert_channels(img, [1, 3])
_assert_threshold(img, threshold)
inverted_img = invert(img)
return torch.where(img >= threshold, inverted_img, img)
def _blurred_degenerate_image(img: Tensor) -> Tensor:
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
kernel = torch.ones((3, 3), dtype=dtype, device=img.device)
kernel[1, 1] = 5.0
kernel /= kernel.sum()
kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])
result_tmp, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
img,
[
kernel.dtype,
],
)
result_tmp = conv2d(result_tmp, kernel, groups=result_tmp.shape[-3])
result_tmp = _cast_squeeze_out(result_tmp, need_cast, need_squeeze, out_dtype)
result = img.clone()
result[..., 1:-1, 1:-1] = result_tmp
return result
def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
if sharpness_factor < 0:
raise ValueError(f"sharpness_factor ({sharpness_factor}) is not non-negative.")
_assert_image_tensor(img)
_assert_channels(img, [1, 3])
if img.size(-1) <= 2 or img.size(-2) <= 2:
return img
return _blend(img, _blurred_degenerate_image(img), sharpness_factor)
def autocontrast(img: Tensor) -> Tensor:
_assert_image_tensor(img)
if img.ndim < 3:
raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
_assert_channels(img, [1, 3])
bound = 1.0 if img.is_floating_point() else 255.0
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
minimum = img.amin(dim=(-2, -1), keepdim=True).to(dtype)
maximum = img.amax(dim=(-2, -1), keepdim=True).to(dtype)
scale = bound / (maximum - minimum)
eq_idxs = torch.isfinite(scale).logical_not()
minimum[eq_idxs] = 0
scale[eq_idxs] = 1
return ((img - minimum) * scale).clamp(0, bound).to(img.dtype)
def _scale_channel(img_chan: Tensor) -> Tensor:
# TODO: we should expect bincount to always be faster than histc, but this
# isn't always the case. Once
# https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if
# block and only use bincount.
if img_chan.is_cuda:
hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)
else:
hist = torch.bincount(img_chan.view(-1), minlength=256)
nonzero_hist = hist[hist != 0]
step = torch.div(nonzero_hist[:-1].sum(), 255, rounding_mode="floor")
if step == 0:
return img_chan
lut = torch.div(torch.cumsum(hist, 0) + torch.div(step, 2, rounding_mode="floor"), step, rounding_mode="floor")
lut = torch.nn.functional.pad(lut, [1, 0])[:-1].clamp(0, 255)
return lut[img_chan.to(torch.int64)].to(torch.uint8)
def _equalize_single_image(img: Tensor) -> Tensor:
return torch.stack([_scale_channel(img[c]) for c in range(img.size(0))])
def equalize(img: Tensor) -> Tensor:
_assert_image_tensor(img)
if not (3 <= img.ndim <= 4):
raise TypeError(f"Input image tensor should have 3 or 4 dimensions, but found {img.ndim}")
if img.dtype != torch.uint8:
raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
_assert_channels(img, [1, 3])
if img.ndim == 3:
return _equalize_single_image(img)
return torch.stack([_equalize_single_image(x) for x in img])
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
_assert_image_tensor(tensor)
if not tensor.is_floating_point():
raise TypeError(f"Input tensor should be a float tensor. Got {tensor.dtype}.")
if tensor.ndim < 3:
raise ValueError(
f"Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = {tensor.size()}"
)
if not inplace:
tensor = tensor.clone()
dtype = tensor.dtype
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
if (std == 0).any():
raise ValueError(f"std evaluated to zero after conversion to {dtype}, leading to division by zero.")
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
return tensor.sub_(mean).div_(std)
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
_assert_image_tensor(img)
if not inplace:
img = img.clone()
img[..., i : i + h, j : j + w] = v
return img
def _create_identity_grid(size: List[int]) -> Tensor:
hw_space = [torch.linspace((-s + 1) / s, (s - 1) / s, s) for s in size]
grid_y, grid_x = torch.meshgrid(hw_space, indexing="ij")
return torch.stack([grid_x, grid_y], -1).unsqueeze(0) # 1 x H x W x 2
def elastic_transform(
img: Tensor,
displacement: Tensor,
interpolation: str = "bilinear",
fill: Optional[Union[int, float, List[float]]] = None,
) -> Tensor:
if not (isinstance(img, torch.Tensor)):
raise TypeError(f"img should be Tensor. Got {type(img)}")
size = list(img.shape[-2:])
displacement = displacement.to(img.device)
identity_grid = _create_identity_grid(size)
grid = identity_grid.to(img.device) + displacement
return _apply_grid_transform(img, grid, interpolation, fill)
|