1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
from collections import defaultdict
import torch
import transforms as reference_transforms
def get_modules(use_v2):
# We need a protected import to avoid the V2 warning in case just V1 is used
if use_v2:
import torchvision.transforms.v2
import torchvision.tv_tensors
return torchvision.transforms.v2, torchvision.tv_tensors
else:
return reference_transforms, None
class DetectionPresetTrain:
# Note: this transform assumes that the input to forward() are always PIL
# images, regardless of the backend parameter.
def __init__(
self,
*,
data_augmentation,
hflip_prob=0.5,
mean=(123.0, 117.0, 104.0),
backend="pil",
use_v2=False,
):
T, tv_tensors = get_modules(use_v2)
transforms = []
backend = backend.lower()
if backend == "tv_tensor":
transforms.append(T.ToImage())
elif backend == "tensor":
transforms.append(T.PILToTensor())
elif backend != "pil":
raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
if data_augmentation == "hflip":
transforms += [T.RandomHorizontalFlip(p=hflip_prob)]
elif data_augmentation == "lsj":
transforms += [
T.ScaleJitter(target_size=(1024, 1024), antialias=True),
# TODO: FixedSizeCrop below doesn't work on tensors!
reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean),
T.RandomHorizontalFlip(p=hflip_prob),
]
elif data_augmentation == "multiscale":
transforms += [
T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333),
T.RandomHorizontalFlip(p=hflip_prob),
]
elif data_augmentation == "ssd":
fill = defaultdict(lambda: mean, {tv_tensors.Mask: 0}) if use_v2 else list(mean)
transforms += [
T.RandomPhotometricDistort(),
T.RandomZoomOut(fill=fill),
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
]
elif data_augmentation == "ssdlite":
transforms += [
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
]
else:
raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
if backend == "pil":
# Note: we could just convert to pure tensors even in v2.
transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
transforms += [T.ToDtype(torch.float, scale=True)]
if use_v2:
transforms += [
T.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.XYXY),
T.SanitizeBoundingBoxes(),
T.ToPureTensor(),
]
self.transforms = T.Compose(transforms)
def __call__(self, img, target):
return self.transforms(img, target)
class DetectionPresetEval:
def __init__(self, backend="pil", use_v2=False):
T, _ = get_modules(use_v2)
transforms = []
backend = backend.lower()
if backend == "pil":
# Note: we could just convert to pure tensors even in v2?
transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
elif backend == "tensor":
transforms += [T.PILToTensor()]
elif backend == "tv_tensor":
transforms += [T.ToImage()]
else:
raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
transforms += [T.ToDtype(torch.float, scale=True)]
if use_v2:
transforms += [T.ToPureTensor()]
self.transforms = T.Compose(transforms)
def __call__(self, img, target):
return self.transforms(img, target)
|