1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
import os
import torch
import torchvision.transforms as transforms
from loss import TripletMarginLoss
from model import EmbeddingNet
from sampler import PKSampler
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
model.train()
running_loss = 0
running_frac_pos_triplets = 0
for i, data in enumerate(data_loader):
optimizer.zero_grad()
samples, targets = data[0].to(device), data[1].to(device)
embeddings = model(samples)
loss, frac_pos_triplets = criterion(embeddings, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_frac_pos_triplets += float(frac_pos_triplets)
if i % print_freq == print_freq - 1:
i += 1
avg_loss = running_loss / print_freq
avg_trip = 100.0 * running_frac_pos_triplets / print_freq
print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%")
running_loss = 0
running_frac_pos_triplets = 0
def find_best_threshold(dists, targets, device):
best_thresh = 0.01
best_correct = 0
for thresh in torch.arange(0.0, 1.51, 0.01):
predictions = dists <= thresh.to(device)
correct = torch.sum(predictions == targets.to(device)).item()
if correct > best_correct:
best_thresh = thresh
best_correct = correct
accuracy = 100.0 * best_correct / dists.size(0)
return best_thresh, accuracy
@torch.inference_mode()
def evaluate(model, loader, device):
model.eval()
embeds, labels = [], []
dists, targets = None, None
for data in loader:
samples, _labels = data[0].to(device), data[1]
out = model(samples)
embeds.append(out)
labels.append(_labels)
embeds = torch.cat(embeds, dim=0)
labels = torch.cat(labels, dim=0)
dists = torch.cdist(embeds, embeds)
labels = labels.unsqueeze(0)
targets = labels == labels.t()
mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0))
dists = dists[mask == 1]
targets = targets[mask == 1]
threshold, accuracy = find_best_threshold(dists, targets, device)
print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}")
def save(model, epoch, save_dir, file_name):
file_name = "epoch_" + str(epoch) + "__" + file_name
save_path = os.path.join(save_dir, file_name)
torch.save(model.state_dict(), save_path)
def main(args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.use_deterministic_algorithms:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
p = args.labels_per_batch
k = args.samples_per_label
batch_size = p * k
model = EmbeddingNet()
if args.resume:
model.load_state_dict(torch.load(args.resume, weights_only=True))
model.to(device)
criterion = TripletMarginLoss(margin=args.margin)
optimizer = Adam(model.parameters(), lr=args.lr)
transform = transforms.Compose(
[
transforms.Lambda(lambda image: image.convert("RGB")),
transforms.Resize((224, 224)),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
]
)
# Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
# be replaced with any classification dataset.
train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True)
test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True)
# targets is a list where the i_th element corresponds to the label of i_th dataset element.
# This is required for PKSampler to randomly sample from exactly p classes. You will need to
# construct targets while building your dataset. Some datasets (such as ImageFolder) have a
# targets attribute with the same format.
targets = train_dataset.targets.tolist()
train_loader = DataLoader(
train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
)
test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)
if args.test_only:
# We disable the cudnn benchmarking because it can noticeably affect the accuracy
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
evaluate(model, test_loader, device)
return
for epoch in range(1, args.epochs + 1):
print("Training...")
train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)
print("Evaluating...")
evaluate(model, test_loader, device)
print("Saving...")
save(model, epoch, args.save_dir, "ckpt.pth")
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")
parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path")
parser.add_argument(
"-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
)
parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation")
parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers")
parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate")
parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
parser.add_argument("--save-dir", default=".", type=str, help="Model save directory")
parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
main(args)
|