File: train.py

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (187 lines) | stat: -rw-r--r-- 6,741 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os

import torch
import torchvision.transforms as transforms
from loss import TripletMarginLoss
from model import EmbeddingNet
from sampler import PKSampler
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST


def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
    model.train()
    running_loss = 0
    running_frac_pos_triplets = 0
    for i, data in enumerate(data_loader):
        optimizer.zero_grad()
        samples, targets = data[0].to(device), data[1].to(device)

        embeddings = model(samples)

        loss, frac_pos_triplets = criterion(embeddings, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        running_frac_pos_triplets += float(frac_pos_triplets)

        if i % print_freq == print_freq - 1:
            i += 1
            avg_loss = running_loss / print_freq
            avg_trip = 100.0 * running_frac_pos_triplets / print_freq
            print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%")
            running_loss = 0
            running_frac_pos_triplets = 0


def find_best_threshold(dists, targets, device):
    best_thresh = 0.01
    best_correct = 0
    for thresh in torch.arange(0.0, 1.51, 0.01):
        predictions = dists <= thresh.to(device)
        correct = torch.sum(predictions == targets.to(device)).item()
        if correct > best_correct:
            best_thresh = thresh
            best_correct = correct

    accuracy = 100.0 * best_correct / dists.size(0)

    return best_thresh, accuracy


@torch.inference_mode()
def evaluate(model, loader, device):
    model.eval()
    embeds, labels = [], []
    dists, targets = None, None

    for data in loader:
        samples, _labels = data[0].to(device), data[1]
        out = model(samples)
        embeds.append(out)
        labels.append(_labels)

    embeds = torch.cat(embeds, dim=0)
    labels = torch.cat(labels, dim=0)

    dists = torch.cdist(embeds, embeds)

    labels = labels.unsqueeze(0)
    targets = labels == labels.t()

    mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0))
    dists = dists[mask == 1]
    targets = targets[mask == 1]

    threshold, accuracy = find_best_threshold(dists, targets, device)

    print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}")


def save(model, epoch, save_dir, file_name):
    file_name = "epoch_" + str(epoch) + "__" + file_name
    save_path = os.path.join(save_dir, file_name)
    torch.save(model.state_dict(), save_path)


def main(args):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    if args.use_deterministic_algorithms:
        torch.backends.cudnn.benchmark = False
        torch.use_deterministic_algorithms(True)
    else:
        torch.backends.cudnn.benchmark = True

    p = args.labels_per_batch
    k = args.samples_per_label
    batch_size = p * k

    model = EmbeddingNet()
    if args.resume:
        model.load_state_dict(torch.load(args.resume, weights_only=True))

    model.to(device)

    criterion = TripletMarginLoss(margin=args.margin)
    optimizer = Adam(model.parameters(), lr=args.lr)

    transform = transforms.Compose(
        [
            transforms.Lambda(lambda image: image.convert("RGB")),
            transforms.Resize((224, 224)),
            transforms.PILToTensor(),
            transforms.ConvertImageDtype(torch.float),
        ]
    )

    # Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
    # be replaced with any classification dataset.
    train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True)
    test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True)

    # targets is a list where the i_th element corresponds to the label of i_th dataset element.
    # This is required for PKSampler to randomly sample from exactly p classes. You will need to
    # construct targets while building your dataset. Some datasets (such as ImageFolder) have a
    # targets attribute with the same format.
    targets = train_dataset.targets.tolist()

    train_loader = DataLoader(
        train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
    )
    test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)

    if args.test_only:
        # We disable the cudnn benchmarking because it can noticeably affect the accuracy
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
        evaluate(model, test_loader, device)
        return

    for epoch in range(1, args.epochs + 1):
        print("Training...")
        train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)

        print("Evaluating...")
        evaluate(model, test_loader, device)

        print("Saving...")
        save(model, epoch, args.save_dir, "ckpt.pth")


def parse_args():
    import argparse

    parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")

    parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path")
    parser.add_argument(
        "-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
    )
    parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
    parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation")
    parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers")
    parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate")
    parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
    parser.add_argument("--save-dir", default=".", type=str, help="Model save directory")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    main(args)