1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
import contextlib
import functools
import itertools
import os
import pathlib
import random
import re
import shutil
import sys
import tempfile
import warnings
from subprocess import CalledProcessError, check_output, STDOUT
import numpy as np
import PIL.Image
import pytest
import torch
import torch.testing
from PIL import Image
from torch.testing._comparison import BooleanPair, NonePair, not_close_error_metas, NumberPair, TensorLikePair
from torchvision import io, tv_tensors
from torchvision.transforms._functional_tensor import _max_value as get_max_value
from torchvision.transforms.v2.functional import to_image, to_pil_image
IN_OSS_CI = any(os.getenv(var) == "true" for var in ["CIRCLECI", "GITHUB_ACTIONS"])
IN_RE_WORKER = os.environ.get("INSIDE_RE_WORKER") is not None
IN_FBCODE = os.environ.get("IN_FBCODE_TORCHVISION") == "1"
CUDA_NOT_AVAILABLE_MSG = "CUDA device not available"
MPS_NOT_AVAILABLE_MSG = "MPS device not available"
OSS_CI_GPU_NO_CUDA_MSG = "We're in an OSS GPU machine, and this test doesn't need cuda."
@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
tmp_dir = tempfile.mkdtemp(**kwargs)
if src is not None:
os.rmdir(tmp_dir)
shutil.copytree(src, tmp_dir)
try:
yield tmp_dir
finally:
shutil.rmtree(tmp_dir)
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
class MapNestedTensorObjectImpl:
def __init__(self, tensor_map_fn):
self.tensor_map_fn = tensor_map_fn
def __call__(self, object):
if isinstance(object, torch.Tensor):
return self.tensor_map_fn(object)
elif isinstance(object, dict):
mapped_dict = {}
for key, value in object.items():
mapped_dict[self(key)] = self(value)
return mapped_dict
elif isinstance(object, (list, tuple)):
mapped_iter = []
for iter in object:
mapped_iter.append(self(iter))
return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)
else:
return object
def map_nested_tensor_object(object, tensor_map_fn):
impl = MapNestedTensorObjectImpl(tensor_map_fn)
return impl(object)
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
def cycle_over(objs):
for idx, obj1 in enumerate(objs):
for obj2 in objs[:idx] + objs[idx + 1 :]:
yield obj1, obj2
def int_dtypes():
return (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def float_dtypes():
return (torch.float32, torch.float64)
@contextlib.contextmanager
def disable_console_output():
with contextlib.ExitStack() as stack, open(os.devnull, "w") as devnull:
stack.enter_context(contextlib.redirect_stdout(devnull))
stack.enter_context(contextlib.redirect_stderr(devnull))
yield
def cpu_and_cuda():
import pytest # noqa
return ("cpu", pytest.param("cuda", marks=pytest.mark.needs_cuda))
def cpu_and_cuda_and_mps():
return cpu_and_cuda() + (pytest.param("mps", marks=pytest.mark.needs_mps),)
def needs_cuda(test_func):
import pytest # noqa
return pytest.mark.needs_cuda(test_func)
def needs_mps(test_func):
import pytest # noqa
return pytest.mark.needs_mps(test_func)
def _create_data(height=3, width=3, channels=3, device="cpu"):
# TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
data = tensor.permute(1, 2, 0).contiguous().cpu().numpy()
mode = "RGB"
if channels == 1:
mode = "L"
data = data[..., 0]
pil_img = Image.fromarray(data, mode=mode)
return tensor, pil_img
def _create_data_batch(height=3, width=3, channels=3, num_samples=4, device="cpu"):
# TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
batch_tensor = torch.randint(0, 256, (num_samples, channels, height, width), dtype=torch.uint8, device=device)
return batch_tensor
def get_list_of_videos(tmpdir, num_videos=5, sizes=None, fps=None):
names = []
for i in range(num_videos):
if sizes is None:
size = 5 * (i + 1)
else:
size = sizes[i]
if fps is None:
f = 5
else:
f = fps[i]
data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
name = os.path.join(tmpdir, f"{i}.mp4")
names.append(name)
io.write_video(name, data, fps=f)
return names
def _assert_equal_tensor_to_pil(tensor, pil_image, msg=None):
# FIXME: this is handled automatically by `assert_equal` below. Let's remove this in favor of it
np_pil_image = np.array(pil_image)
if np_pil_image.ndim == 2:
np_pil_image = np_pil_image[:, :, None]
pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
if msg is None:
msg = f"tensor:\n{tensor} \ndid not equal PIL tensor:\n{pil_tensor}"
assert_equal(tensor.cpu(), pil_tensor, msg=msg)
def _assert_approx_equal_tensor_to_pil(
tensor, pil_image, tol=1e-5, msg=None, agg_method="mean", allowed_percentage_diff=None
):
# FIXME: this is handled automatically by `assert_close` below. Let's remove this in favor of it
# TODO: we could just merge this into _assert_equal_tensor_to_pil
np_pil_image = np.array(pil_image)
if np_pil_image.ndim == 2:
np_pil_image = np_pil_image[:, :, None]
pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
if allowed_percentage_diff is not None:
# Assert that less than a given %age of pixels are different
assert (tensor != pil_tensor).to(torch.float).mean() <= allowed_percentage_diff
# error value can be mean absolute error, max abs error
# Convert to float to avoid underflow when computing absolute difference
tensor = tensor.to(torch.float)
pil_tensor = pil_tensor.to(torch.float)
err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
assert err < tol, f"{err} vs {tol}"
def _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=1e-8, **fn_kwargs):
transformed_batch = fn(batch_tensors, **fn_kwargs)
for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
transformed_img = fn(img_tensor, **fn_kwargs)
torch.testing.assert_close(transformed_img, transformed_batch[i, ...], rtol=0, atol=1e-6)
if scripted_fn_atol >= 0:
scripted_fn = torch.jit.script(fn)
# scriptable function test
s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
torch.testing.assert_close(transformed_batch, s_transformed_batch, rtol=1e-5, atol=scripted_fn_atol)
def cache(fn):
"""Similar to :func:`functools.cache` (Python >= 3.8) or :func:`functools.lru_cache` with infinite cache size,
but this also caches exceptions.
"""
sentinel = object()
out_cache = {}
exc_tb_cache = {}
@functools.wraps(fn)
def wrapper(*args, **kwargs):
key = args + tuple(kwargs.values())
out = out_cache.get(key, sentinel)
if out is not sentinel:
return out
exc_tb = exc_tb_cache.get(key, sentinel)
if exc_tb is not sentinel:
raise exc_tb[0].with_traceback(exc_tb[1])
try:
out = fn(*args, **kwargs)
except Exception as exc:
# We need to cache the traceback here as well. Otherwise, each re-raise will add the internal pytest
# traceback frames anew, but they will only be removed once. Thus, the traceback will be ginormous hiding
# the actual information in the noise. See https://github.com/pytest-dev/pytest/issues/10363 for details.
exc_tb_cache[key] = exc, exc.__traceback__
raise exc
out_cache[key] = out
return out
return wrapper
def combinations_grid(**kwargs):
"""Creates a grid of input combinations.
Each element in the returned sequence is a dictionary containing one possible combination as values.
Example:
>>> combinations_grid(foo=("bar", "baz"), spam=("eggs", "ham"))
[
{'foo': 'bar', 'spam': 'eggs'},
{'foo': 'bar', 'spam': 'ham'},
{'foo': 'baz', 'spam': 'eggs'},
{'foo': 'baz', 'spam': 'ham'}
]
"""
return [dict(zip(kwargs.keys(), values)) for values in itertools.product(*kwargs.values())]
class ImagePair(TensorLikePair):
def __init__(
self,
actual,
expected,
*,
mae=False,
**other_parameters,
):
if all(isinstance(input, PIL.Image.Image) for input in [actual, expected]):
actual, expected = [to_image(input) for input in [actual, expected]]
super().__init__(actual, expected, **other_parameters)
self.mae = mae
def compare(self) -> None:
actual, expected = self.actual, self.expected
self._compare_attributes(actual, expected)
actual, expected = self._equalize_attributes(actual, expected)
if self.mae:
if actual.dtype is torch.uint8:
actual, expected = actual.to(torch.int), expected.to(torch.int)
mae = float(torch.abs(actual - expected).float().mean())
if mae > self.atol:
self._fail(
AssertionError,
f"The MAE of the images is {mae}, but only {self.atol} is allowed.",
)
else:
super()._compare_values(actual, expected)
def assert_close(
actual,
expected,
*,
allow_subclasses=True,
rtol=None,
atol=None,
equal_nan=False,
check_device=True,
check_dtype=True,
check_layout=True,
check_stride=False,
msg=None,
**kwargs,
):
"""Superset of :func:`torch.testing.assert_close` with support for PIL vs. tensor image comparison"""
__tracebackhide__ = True
error_metas = not_close_error_metas(
actual,
expected,
pair_types=(
NonePair,
BooleanPair,
NumberPair,
ImagePair,
TensorLikePair,
),
allow_subclasses=allow_subclasses,
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
check_device=check_device,
check_dtype=check_dtype,
check_layout=check_layout,
check_stride=check_stride,
**kwargs,
)
if error_metas:
raise error_metas[0].to_error(msg)
assert_equal = functools.partial(assert_close, rtol=0, atol=0)
DEFAULT_SIZE = (17, 11)
NUM_CHANNELS_MAP = {
"GRAY": 1,
"GRAY_ALPHA": 2,
"RGB": 3,
"RGBA": 4,
}
def make_image(
size=DEFAULT_SIZE,
*,
color_space="RGB",
batch_dims=(),
dtype=None,
device="cpu",
memory_format=torch.contiguous_format,
):
num_channels = NUM_CHANNELS_MAP[color_space]
dtype = dtype or torch.uint8
max_value = get_max_value(dtype)
data = torch.testing.make_tensor(
(*batch_dims, num_channels, *size),
low=0,
high=max_value,
dtype=dtype,
device=device,
memory_format=memory_format,
)
if color_space in {"GRAY_ALPHA", "RGBA"}:
data[..., -1, :, :] = max_value
return tv_tensors.Image(data)
def make_image_tensor(*args, **kwargs):
return make_image(*args, **kwargs).as_subclass(torch.Tensor)
def make_image_pil(*args, **kwargs):
return to_pil_image(make_image(*args, **kwargs))
def make_bounding_boxes(
canvas_size=DEFAULT_SIZE,
*,
format=tv_tensors.BoundingBoxFormat.XYXY,
num_boxes=1,
dtype=None,
device="cpu",
):
def sample_position(values, max_value):
# We cannot use torch.randint directly here, because it only allows integer scalars as values for low and high.
# However, if we have batch_dims, we need tensors as limits.
return torch.stack([torch.randint(max_value - v, ()) for v in values.tolist()])
if isinstance(format, str):
format = tv_tensors.BoundingBoxFormat[format]
dtype = dtype or torch.float32
h, w = [torch.randint(1, s, (num_boxes,)) for s in canvas_size]
y = sample_position(h, canvas_size[0])
x = sample_position(w, canvas_size[1])
if format is tv_tensors.BoundingBoxFormat.XYWH:
parts = (x, y, w, h)
elif format is tv_tensors.BoundingBoxFormat.XYXY:
x1, y1 = x, y
x2 = x1 + w
y2 = y1 + h
parts = (x1, y1, x2, y2)
elif format is tv_tensors.BoundingBoxFormat.CXCYWH:
cx = x + w / 2
cy = y + h / 2
parts = (cx, cy, w, h)
else:
raise ValueError(f"Format {format} is not supported")
return tv_tensors.BoundingBoxes(
torch.stack(parts, dim=-1).to(dtype=dtype, device=device), format=format, canvas_size=canvas_size
)
def make_detection_masks(size=DEFAULT_SIZE, *, num_masks=1, dtype=None, device="cpu"):
"""Make a "detection" mask, i.e. (*, N, H, W), where each object is encoded as one of N boolean masks"""
return tv_tensors.Mask(
torch.testing.make_tensor(
(num_masks, *size),
low=0,
high=2,
dtype=dtype or torch.bool,
device=device,
)
)
def make_segmentation_mask(size=DEFAULT_SIZE, *, num_categories=10, batch_dims=(), dtype=None, device="cpu"):
"""Make a "segmentation" mask, i.e. (*, H, W), where the category is encoded as pixel value"""
return tv_tensors.Mask(
torch.testing.make_tensor(
(*batch_dims, *size),
low=0,
high=num_categories,
dtype=dtype or torch.uint8,
device=device,
)
)
def make_video(size=DEFAULT_SIZE, *, num_frames=3, batch_dims=(), **kwargs):
return tv_tensors.Video(make_image(size, batch_dims=(*batch_dims, num_frames), **kwargs))
def make_video_tensor(*args, **kwargs):
return make_video(*args, **kwargs).as_subclass(torch.Tensor)
def assert_run_python_script(source_code):
"""Utility to check assertions in an independent Python subprocess.
The script provided in the source code should return 0 and not print
anything on stderr or stdout. Modified from scikit-learn test utils.
Args:
source_code (str): The Python source code to execute.
"""
with get_tmp_dir() as root:
path = pathlib.Path(root) / "main.py"
with open(path, "w") as file:
file.write(source_code)
try:
out = check_output([sys.executable, str(path)], stderr=STDOUT)
except CalledProcessError as e:
raise RuntimeError(f"script errored with output:\n{e.output.decode()}")
if out != b"":
raise AssertionError(out.decode())
@contextlib.contextmanager
def assert_no_warnings():
# The name `catch_warnings` is a misnomer as the context manager does **not** catch any warnings, but rather scopes
# the warning filters. All changes that are made to the filters while in this context, will be reset upon exit.
with warnings.catch_warnings():
warnings.simplefilter("error")
yield
@contextlib.contextmanager
def ignore_jit_no_profile_information_warning():
# Calling a scripted object often triggers a warning like
# `UserWarning: operator() profile_node %$INT1 : int[] = prim::profile_ivalue($INT2) does not have profile information`
# with varying `INT1` and `INT2`. Since these are uninteresting for us and only clutter the test summary, we ignore
# them.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message=re.escape("operator() profile_node %"), category=UserWarning)
yield
|