1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
|
import colorsys
import itertools
import math
import os
from functools import partial
from typing import Sequence
import numpy as np
import PIL.Image
import pytest
import torch
import torchvision.transforms as T
import torchvision.transforms._functional_pil as F_pil
import torchvision.transforms._functional_tensor as F_t
import torchvision.transforms.functional as F
from common_utils import (
_assert_approx_equal_tensor_to_pil,
_assert_equal_tensor_to_pil,
_create_data,
_create_data_batch,
_test_fn_on_batch,
assert_equal,
cpu_and_cuda,
needs_cuda,
)
from torchvision.transforms import InterpolationMode
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
InterpolationMode.NEAREST,
InterpolationMode.NEAREST_EXACT,
InterpolationMode.BILINEAR,
InterpolationMode.BICUBIC,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
def test_image_sizes(device, fn):
script_F = torch.jit.script(fn)
img_tensor, pil_img = _create_data(16, 18, 3, device=device)
value_img = fn(img_tensor)
value_pil_img = fn(pil_img)
assert value_img == value_pil_img
value_img_script = script_F(img_tensor)
assert value_img == value_img_script
batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
value_img_batch = fn(batch_tensors)
assert value_img == value_img_batch
@needs_cuda
def test_scale_channel():
"""Make sure that _scale_channel gives the same results on CPU and GPU as
histc or bincount are used depending on the device.
"""
# TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
# only use bincount and remove that test.
size = (1_000,)
img_chan = torch.randint(0, 256, size=size).to("cpu")
scaled_cpu = F_t._scale_channel(img_chan)
scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
class TestRotate:
ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
scripted_rotate = torch.jit.script(F.rotate)
IMG_W = 26
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
@pytest.mark.parametrize(
"center",
[
None,
(int(IMG_W * 0.3), int(IMG_W * 0.4)),
[int(IMG_W * 0.5), int(IMG_W * 0.6)],
],
)
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("angle", range(-180, 180, 34))
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize(
"fill",
[
None,
[0, 0, 0],
(1, 2, 3),
[255, 255, 255],
[
1,
],
(2.0,),
],
)
@pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and torch.device(device).type == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
assert (
out_tensor.shape == out_pil_tensor.shape
), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 3% of different pixels
assert ratio_diff_pixels < 0.03, (
f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
f"{out_pil_tensor[0, :7, :7]}"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_rotate_batch(self, device, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
center = (20, 22)
_test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
def test_rotate_interpolation_type(self):
tensor, _ = _create_data(26, 26)
res1 = F.rotate(tensor, 45, interpolation=PIL.Image.BILINEAR)
res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
assert_equal(res1, res2)
class TestAffine:
ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
scripted_affine = torch.jit.script(F.affine)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_identity_map(self, device, height, width, dt):
# Tests on square and rectangular images
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
# 1) identity map
out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
out_tensor = self.scripted_affine(
tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize(
"angle, config",
[
(90, {"k": 1, "dims": (-1, -2)}),
(45, None),
(30, None),
(-30, None),
(-45, None),
(-90, {"k": -1, "dims": (-1, -2)}),
(180, {"k": 2, "dims": (-1, -2)}),
],
)
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_square_rotations(self, device, height, width, dt, angle, config, fn):
# 2) Test rotation
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(
pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)
out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
if config is not None:
assert_equal(torch.rot90(tensor, **config), out_tensor)
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 6% of different pixels
assert ratio_diff_pixels < 0.06
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
@pytest.mark.parametrize("center", [None, [0, 0]])
def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
# Tests on rectangular images
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(
pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(
tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 3% of different pixels
assert ratio_diff_pixels < 0.03
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_translations(self, device, height, width, dt, t, fn):
# 3) Test translation
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
_assert_equal_tensor_to_pil(out_tensor, out_pil_img)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize(
"a, t, s, sh, f",
[
(45.5, [5, 6], 1.0, [0.0, 0.0], None),
(33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
(45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
(33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
(85, (10, -10), 0.7, [0.0, 0.0], [1]),
(0, [0, 0], 1.0, [35.0], (2.0,)),
(-25, [0, 0], 1.2, [0.0, 15.0], None),
(-45, [-10, 0], 0.7, [2.0, 5.0], None),
(-45, [-10, -10], 1.2, [4.0, 5.0], None),
(-90, [0, 0], 1.0, [0.0, 0.0], None),
],
)
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
# 4) Test rotation + translation + scale + shear
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
f_pil = int(f[0]) if f is not None and len(f) == 1 else f
out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
tol = 0.06 if device == "cuda" else 0.05
assert ratio_diff_pixels < tol
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_batches(self, device, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
_test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_interpolation_type(self, device):
tensor, pil_img = _create_data(26, 26, device=device)
res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=PIL.Image.BILINEAR)
res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
assert_equal(res1, res2)
def _get_data_dims_and_points_for_perspective():
# Ideally we would parametrize independently over data dims and points, but
# we want to tests on some points that also depend on the data dims.
# Pytest doesn't support covariant parametrization, so we do it somewhat manually here.
data_dims = [(26, 34), (26, 26)]
points = [
[[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
[[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
[[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
]
dims_and_points = list(itertools.product(data_dims, points))
# up to here, we could just have used 2 @parametrized.
# Down below is the covarariant part as the points depend on the data dims.
n = 10
for dim in data_dims:
points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
return dims_and_points
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("fill", (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1], (2.0,)))
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
data_dims, (spoints, epoints) = dims_and_points
tensor, pil_img = _create_data(*data_dims, device=device)
if dt is not None:
tensor = tensor.to(dtype=dt)
interpolation = NEAREST
fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
out_pil_img = F.perspective(
pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 5% of different pixels
assert ratio_diff_pixels < 0.05
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
def test_perspective_batch(device, dims_and_points, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
data_dims, (spoints, epoints) = dims_and_points
batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
# Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
# the border may be entirely different due to small rounding errors.
scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
_test_fn_on_batch(
batch_tensors,
F.perspective,
scripted_fn_atol=scripted_fn_atol,
startpoints=spoints,
endpoints=epoints,
interpolation=NEAREST,
)
def test_perspective_interpolation_type():
spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
tensor = torch.randint(0, 256, (3, 26, 26))
res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=PIL.Image.BILINEAR)
res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
assert_equal(res1, res2)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [32, 26, [32], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
def test_resize(device, dt, size, max_size, interpolation):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
return # unsupported
torch.manual_seed(12)
script_fn = torch.jit.script(F.resize)
tensor, pil_img = _create_data(26, 36, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
batch_tensors = batch_tensors.to(dt)
resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
if interpolation != NEAREST:
# We can not check values if mode = NEAREST, as results are different
# E.g. resized_tensor = [[a, a, b, c, d, d, e, ...]]
# E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
resized_tensor_f = resized_tensor
# we need to cast to uint8 to compare with PIL image
if resized_tensor_f.dtype == torch.uint8:
resized_tensor_f = resized_tensor_f.to(torch.float)
# Pay attention to high tolerance for MAE
_assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=3.0)
if isinstance(size, int):
script_size = [size]
else:
script_size = size
resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True)
assert_equal(resized_tensor, resize_result)
_test_fn_on_batch(
batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_resize_asserts(device):
tensor, pil_img = _create_data(26, 36, device=device)
res1 = F.resize(tensor, size=32, interpolation=PIL.Image.BILINEAR)
res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
assert_equal(res1, res2)
for img in (tensor, pil_img):
exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
with pytest.raises(ValueError, match=exp_msg):
F.resize(img, size=(32, 34), max_size=35)
with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
F.resize(img, size=32, max_size=32)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
def test_resize_antialias(device, dt, size, interpolation):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
torch.manual_seed(12)
script_fn = torch.jit.script(F.resize)
tensor, pil_img = _create_data(320, 290, device=device)
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, antialias=True)
assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
resized_tensor_f = resized_tensor
# we need to cast to uint8 to compare with PIL image
if resized_tensor_f.dtype == torch.uint8:
resized_tensor_f = resized_tensor_f.to(torch.float)
_assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
accepted_tol = 1.0 + 1e-5
if interpolation == BICUBIC:
# this overall mean value to make the tests pass
# High value is mostly required for test cases with
# downsampling and upsampling where we can not exactly
# match PIL implementation.
accepted_tol = 15.0
_assert_approx_equal_tensor_to_pil(
resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
)
if isinstance(size, int):
script_size = [
size,
]
else:
script_size = size
resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
assert_equal(resized_tensor, resize_result)
def check_functional_vs_PIL_vs_scripted(
fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
script_fn = torch.jit.script(fn)
torch.manual_seed(15)
tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
if dtype is not None:
tensor = F.convert_image_dtype(tensor, dtype)
batch_tensors = F.convert_image_dtype(batch_tensors, dtype)
out_fn_t = fn_t(tensor, **config)
out_pil = fn_pil(pil_img, **config)
out_scripted = script_fn(tensor, **config)
assert out_fn_t.dtype == out_scripted.dtype
assert out_fn_t.size()[1:] == out_pil.size[::-1]
rbg_tensor = out_fn_t
if out_fn_t.dtype != torch.uint8:
rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)
# Check that max difference does not exceed 2 in [0, 255] range
# Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
_assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
atol = 1e-6
if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
atol = 1.0
assert out_fn_t.allclose(out_scripted, atol=atol)
# FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
_test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_brightness(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_brightness,
F_pil.adjust_brightness,
F_t.adjust_brightness,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_invert(device, dtype, channels):
check_functional_vs_PIL_vs_scripted(
F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
def test_posterize(device, config, channels):
check_functional_vs_PIL_vs_scripted(
F.posterize,
F_pil.posterize,
F_t.posterize,
config,
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
def test_solarize1(device, config, channels):
check_functional_vs_PIL_vs_scripted(
F.solarize,
F_pil.solarize,
F_t.solarize,
config,
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_solarize2(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.solarize,
lambda img, threshold: F_pil.solarize(img, 255 * threshold),
F_t.solarize,
config,
device,
dtype,
channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize(
("dtype", "threshold"),
[
*[
(dtype, threshold)
for dtype, threshold in itertools.product(
[torch.float32, torch.float16],
[0.0, 0.25, 0.5, 0.75, 1.0],
)
],
*[(torch.uint8, threshold) for threshold in [0, 64, 128, 192, 255]],
*[(torch.int64, threshold) for threshold in [0, 2**32, 2**63 - 1]],
],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_solarize_threshold_within_bound(threshold, dtype, device):
make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
img = make_img((3, 12, 23), dtype=dtype, device=device)
F_t.solarize(img, threshold)
@pytest.mark.parametrize(
("dtype", "threshold"),
[
(torch.float32, 1.5),
(torch.float16, 1.5),
(torch.uint8, 260),
(torch.int64, 2**64),
],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_solarize_threshold_above_bound(threshold, dtype, device):
make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
img = make_img((3, 12, 23), dtype=dtype, device=device)
with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
F_t.solarize(img, threshold)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_sharpness(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_sharpness,
F_pil.adjust_sharpness,
F_t.adjust_sharpness,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast(device, dtype, channels):
check_functional_vs_PIL_vs_scripted(
F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
a = a / 2.0 + 0.3
assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()
a[0, 0] = 0.7
assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("channels", [1, 3])
def test_equalize(device, channels):
torch.use_deterministic_algorithms(False)
check_functional_vs_PIL_vs_scripted(
F.equalize,
F_pil.equalize,
F_t.equalize,
{},
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_contrast(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_saturation(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_hue(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_gamma(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_gamma,
F_pil.adjust_gamma,
F_t.adjust_gamma,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
@pytest.mark.parametrize(
"config",
[
{"padding_mode": "constant", "fill": 0},
{"padding_mode": "constant", "fill": 10},
{"padding_mode": "constant", "fill": 20.2},
{"padding_mode": "edge"},
{"padding_mode": "reflect"},
{"padding_mode": "symmetric"},
],
)
def test_pad(device, dt, pad, config):
script_fn = torch.jit.script(F.pad)
tensor, pil_img = _create_data(7, 8, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
batch_tensors = batch_tensors.to(dt)
pad_tensor = F_t.pad(tensor, pad, **config)
pad_pil_img = F_pil.pad(pil_img, pad, **config)
pad_tensor_8b = pad_tensor
# we need to cast to uint8 to compare with PIL image
if pad_tensor_8b.dtype != torch.uint8:
pad_tensor_8b = pad_tensor_8b.to(torch.uint8)
_assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
if isinstance(pad, int):
script_pad = [
pad,
]
else:
script_pad = pad
pad_tensor_script = script_fn(tensor, script_pad, **config)
assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
_test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("mode", [NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC])
def test_resized_crop(device, mode):
# test values of F.resized_crop in several cases:
# 1) resize to the same size, crop to the same size => should be identity
tensor, _ = _create_data(26, 36, device=device)
out_tensor = F.resized_crop(
tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode, antialias=True
)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
# 2) resize by half and crop a TL corner
tensor, _ = _create_data(26, 36, device=device)
out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
expected_out_tensor = tensor[:, :20:2, :30:2]
assert_equal(
expected_out_tensor,
out_tensor,
msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
)
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
_test_fn_on_batch(
batch_tensors,
F.resized_crop,
top=1,
left=2,
height=20,
width=30,
size=[10, 15],
interpolation=NEAREST,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"func, args",
[
(F_t.get_dimensions, ()),
(F_t.get_image_size, ()),
(F_t.get_image_num_channels, ()),
(F_t.vflip, ()),
(F_t.hflip, ()),
(F_t.crop, (1, 2, 4, 5)),
(F_t.adjust_brightness, (0.0,)),
(F_t.adjust_contrast, (1.0,)),
(F_t.adjust_hue, (-0.5,)),
(F_t.adjust_saturation, (2.0,)),
(F_t.pad, ([2], 2, "constant")),
(F_t.resize, ([10, 11],)),
(F_t.perspective, ([0.2])),
(F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
(F_t.invert, ()),
(F_t.posterize, (0,)),
(F_t.solarize, (0.3,)),
(F_t.adjust_sharpness, (0.3,)),
(F_t.autocontrast, ()),
(F_t.equalize, ()),
],
)
def test_assert_image_tensor(device, func, args):
shape = (100,)
tensor = torch.rand(*shape, dtype=torch.float, device=device)
with pytest.raises(Exception, match=r"Tensor is not a torch image."):
func(tensor, *args)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_vflip(device):
script_vflip = torch.jit.script(F.vflip)
img_tensor, pil_img = _create_data(16, 18, device=device)
vflipped_img = F.vflip(img_tensor)
vflipped_pil_img = F.vflip(pil_img)
_assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)
# scriptable function test
vflipped_img_script = script_vflip(img_tensor)
assert_equal(vflipped_img, vflipped_img_script)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.vflip)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_hflip(device):
script_hflip = torch.jit.script(F.hflip)
img_tensor, pil_img = _create_data(16, 18, device=device)
hflipped_img = F.hflip(img_tensor)
hflipped_pil_img = F.hflip(pil_img)
_assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)
# scriptable function test
hflipped_img_script = script_hflip(img_tensor)
assert_equal(hflipped_img, hflipped_img_script)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.hflip)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"top, left, height, width",
[
(1, 2, 4, 5), # crop inside top-left corner
(2, 12, 3, 4), # crop inside top-right corner
(8, 3, 5, 6), # crop inside bottom-left corner
(8, 11, 4, 3), # crop inside bottom-right corner
(50, 50, 10, 10), # crop outside the image
(-50, -50, 10, 10), # crop outside the image
],
)
def test_crop(device, top, left, height, width):
script_crop = torch.jit.script(F.crop)
img_tensor, pil_img = _create_data(16, 18, device=device)
pil_img_cropped = F.crop(pil_img, top, left, height, width)
img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
_assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)
img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
_assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):
# true_cv2_results = {
# # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
# # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
# "3_3_0.8": ...
# # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
# "3_3_0.5": ...
# # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
# "3_5_0.8": ...
# # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
# "3_5_0.5": ...
# # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
# # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
# "23_23_1.7": ...
# }
p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
true_cv2_results = torch.load(p, weights_only=False)
if image_size == "small":
tensor = (
torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
)
else:
tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
_ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
_sigma = sigma[0] if sigma is not None else None
shape = tensor.shape
gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
if gt_key not in true_cv2_results:
return
true_out = (
torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
)
out = fn(tensor, kernel_size=ksize, sigma=sigma)
torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_hsv2rgb(device):
scripted_fn = torch.jit.script(F_t._hsv2rgb)
shape = (3, 100, 150)
for _ in range(10):
hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
rgb_img = F_t._hsv2rgb(hsv_img)
ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
(
h,
s,
v,
) = hsv_img.unbind(0)
h = h.flatten().cpu().numpy()
s = s.flatten().cpu().numpy()
v = v.flatten().cpu().numpy()
rgb = []
for h1, s1, v1 in zip(h, s, v):
rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)
s_rgb_img = scripted_fn(hsv_img)
torch.testing.assert_close(rgb_img, s_rgb_img)
batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
_test_fn_on_batch(batch_tensors, F_t._hsv2rgb)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_rgb2hsv(device):
scripted_fn = torch.jit.script(F_t._rgb2hsv)
shape = (3, 150, 100)
for _ in range(10):
rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
hsv_img = F_t._rgb2hsv(rgb_img)
ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
(
r,
g,
b,
) = rgb_img.unbind(dim=-3)
r = r.flatten().cpu().numpy()
g = g.flatten().cpu().numpy()
b = b.flatten().cpu().numpy()
hsv = []
for r1, g1, b1 in zip(r, g, b):
hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))
colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)
ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)
max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
max_diff = max(max_diff_h, max_diff_sv)
assert max_diff < 1e-5
s_hsv_img = scripted_fn(rgb_img)
torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)
batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
_test_fn_on_batch(batch_tensors, F_t._rgb2hsv)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("num_output_channels", (3, 1))
def test_rgb_to_grayscale(device, num_output_channels):
script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)
img_tensor, pil_img = _create_data(32, 34, device=device)
gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
_assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")
s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
assert_equal(s_gray_tensor, gray_tensor)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_center_crop(device):
script_center_crop = torch.jit.script(F.center_crop)
img_tensor, pil_img = _create_data(32, 34, device=device)
cropped_pil_image = F.center_crop(pil_img, [10, 11])
cropped_tensor = F.center_crop(img_tensor, [10, 11])
_assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
cropped_tensor = script_center_crop(img_tensor, [10, 11])
_assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_five_crop(device):
script_five_crop = torch.jit.script(F.five_crop)
img_tensor, pil_img = _create_data(32, 34, device=device)
cropped_pil_images = F.five_crop(pil_img, [10, 11])
cropped_tensors = F.five_crop(img_tensor, [10, 11])
for i in range(5):
_assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
cropped_tensors = script_five_crop(img_tensor, [10, 11])
for i in range(5):
_assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)
for j in range(len(tuple_transformed_imgs)):
true_transformed_img = tuple_transformed_imgs[j]
transformed_img = tuple_transformed_batches[j][i, ...]
assert_equal(true_transformed_img, transformed_img)
# scriptable function test
s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
assert_equal(transformed_batch, s_transformed_batch)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_ten_crop(device):
script_ten_crop = torch.jit.script(F.ten_crop)
img_tensor, pil_img = _create_data(32, 34, device=device)
cropped_pil_images = F.ten_crop(pil_img, [10, 11])
cropped_tensors = F.ten_crop(img_tensor, [10, 11])
for i in range(10):
_assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
cropped_tensors = script_ten_crop(img_tensor, [10, 11])
for i in range(10):
_assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)
for j in range(len(tuple_transformed_imgs)):
true_transformed_img = tuple_transformed_imgs[j]
transformed_img = tuple_transformed_batches[j][i, ...]
assert_equal(true_transformed_img, transformed_img)
# scriptable function test
s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
assert_equal(transformed_batch, s_transformed_batch)
def test_elastic_transform_asserts():
with pytest.raises(TypeError, match="Argument displacement should be a Tensor"):
_ = F.elastic_transform("abc", displacement=None)
with pytest.raises(TypeError, match="img should be PIL Image or Tensor"):
_ = F.elastic_transform("abc", displacement=torch.rand(1))
img_tensor = torch.rand(1, 3, 32, 24)
with pytest.raises(ValueError, match="Argument displacement shape should"):
_ = F.elastic_transform(img_tensor, displacement=torch.rand(1, 2))
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
"fill",
[None, [255, 255, 255], (2.0,)],
)
def test_elastic_transform_consistency(device, interpolation, dt, fill):
script_elastic_transform = torch.jit.script(F.elastic_transform)
img_tensor, _ = _create_data(32, 34, device=device)
# As there is no PIL implementation for elastic_transform,
# thus we do not run tests tensor vs pillow
if dt is not None:
img_tensor = img_tensor.to(dt)
displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [32, 34])
kwargs = dict(
displacement=displacement,
interpolation=interpolation,
fill=fill,
)
out_tensor1 = F.elastic_transform(img_tensor, **kwargs)
out_tensor2 = script_elastic_transform(img_tensor, **kwargs)
assert_equal(out_tensor1, out_tensor2)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [16, 18])
kwargs["displacement"] = displacement
if dt is not None:
batch_tensors = batch_tensors.to(dt)
_test_fn_on_batch(batch_tensors, F.elastic_transform, **kwargs)
if __name__ == "__main__":
pytest.main([__file__])
|