1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
|
import concurrent.futures
import glob
import io
import os
import re
import sys
from pathlib import Path
import numpy as np
import pytest
import requests
import torch
import torchvision.transforms.v2.functional as F
from common_utils import assert_equal, cpu_and_cuda, IN_OSS_CI, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image, ImageOps, ImageSequence
from torchvision.io.image import (
decode_avif,
decode_gif,
decode_heic,
decode_image,
decode_jpeg,
decode_png,
decode_webp,
encode_jpeg,
encode_png,
ImageReadMode,
read_file,
read_image,
write_file,
write_jpeg,
write_png,
)
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
IS_MACOS = sys.platform == "darwin"
IS_LINUX = sys.platform == "linux"
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
WEBP_TEST_IMAGES_DIR = os.environ.get("WEBP_TEST_IMAGES_DIR", "")
# See https://github.com/pytorch/vision/pull/8724#issuecomment-2503964558
HEIC_AVIF_MESSAGE = "AVIF and HEIF only available on linux."
def _get_safe_image_name(name):
# Used when we need to change the pytest "id" for an "image path" parameter.
# If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
# and this creates issues when the test is running in a different machine than where it was collected
# (typically, in fb internal infra)
return name.split(os.path.sep)[-1]
def get_images(directory, img_ext):
assert os.path.isdir(directory)
image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
for path in image_paths:
if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
yield path
def pil_read_image(img_path):
with Image.open(img_path) as img:
return torch.from_numpy(np.array(img))
def normalize_dimensions(img_pil):
if len(img_pil.shape) == 3:
img_pil = img_pil.permute(2, 0, 1)
else:
img_pil = img_pil.unsqueeze(0)
return img_pil
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("RGB", ImageReadMode.RGB),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_jpeg, decode_image))
def test_decode_jpeg(img_path, pil_mode, mode, scripted, decode_fun):
with Image.open(img_path) as img:
is_cmyk = img.mode == "CMYK"
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
if is_cmyk and mode == ImageReadMode.UNCHANGED:
# flip the colors to match libjpeg
img_pil = 255 - img_pil
img_pil = normalize_dimensions(img_pil)
data = read_file(img_path)
if scripted:
decode_fun = torch.jit.script(decode_fun)
img_ljpeg = decode_fun(data, mode=mode)
# Permit a small variation on pixel values to account for implementation
# differences between Pillow and LibJPEG.
abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
assert abs_mean_diff < 2
@pytest.mark.parametrize("codec", ["png", "jpeg"])
@pytest.mark.parametrize("orientation", [1, 2, 3, 4, 5, 6, 7, 8, 0])
def test_decode_with_exif_orientation(tmpdir, codec, orientation):
fp = os.path.join(tmpdir, f"exif_oriented_{orientation}.{codec}")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
exif = im.getexif()
exif[0x0112] = orientation # set exif orientation
im.save(fp, codec.upper(), exif=exif.tobytes())
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
@pytest.mark.parametrize("size", [65533, 1, 7, 10, 23, 33])
def test_invalid_exif(tmpdir, size):
# Inspired from a PIL test:
# https://github.com/python-pillow/Pillow/blob/8f63748e50378424628155994efd7e0739a4d1d1/Tests/test_file_jpeg.py#L299
fp = os.path.join(tmpdir, "invalid_exif.jpg")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
im.save(fp, "JPEG", exif=b"1" * size)
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
def test_decode_bad_huffman_images():
# sanity check: make sure we can decode the bad Huffman encoding
bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
decode_jpeg(bad_huff)
@pytest.mark.parametrize(
"img_path",
[
pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
],
)
def test_damaged_corrupt_images(img_path):
# Truncated images should raise an exception
data = read_file(img_path)
if "corrupt34" in img_path:
match_message = "Image is incomplete or truncated"
else:
match_message = "Unsupported marker type"
with pytest.raises(RuntimeError, match=match_message):
decode_jpeg(data)
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("LA", ImageReadMode.GRAY_ALPHA),
("RGB", ImageReadMode.RGB),
("RGBA", ImageReadMode.RGB_ALPHA),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_png, decode_image))
def test_decode_png(img_path, pil_mode, mode, scripted, decode_fun):
if scripted:
decode_fun = torch.jit.script(decode_fun)
with Image.open(img_path) as img:
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
img_pil = normalize_dimensions(img_pil)
if img_path.endswith("16.png"):
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
assert img_lpng.dtype == torch.uint16
# PIL converts 16 bits pngs to uint8
img_lpng = F.to_dtype(img_lpng, torch.uint8, scale=True)
else:
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
tol = 0 if pil_mode is None else 1
if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
# Avoid checking the transparency channel until
# https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
# is fixed.
# TODO: remove once fix is released in PIL. Should be > 8.3.1.
img_lpng, img_pil = img_lpng[0], img_pil[0]
torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)
def test_decode_png_errors():
with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
with pytest.raises(RuntimeError, match="Content is too small for png"):
decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png")))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_png(img_path, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
encode = torch.jit.script(encode_png) if scripted else encode_png
png_buf = encode(img_pil, compression_level=6)
rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
rec_img = torch.from_numpy(np.array(rec_img))
rec_img = rec_img.permute(2, 0, 1)
assert_equal(img_pil, rec_img)
def test_encode_png_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_png(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_png(img_path, tmpdir, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
filename, _ = os.path.splitext(os.path.basename(img_path))
torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
write = torch.jit.script(write_png) if scripted else write_png
write(img_pil, torch_png, compression_level=6)
saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
saved_image = saved_image.permute(2, 0, 1)
assert_equal(img_pil, saved_image)
def test_read_image():
# Just testing torchcsript, the functionality is somewhat tested already in other tests.
path = next(get_images(IMAGE_ROOT, ".jpg"))
out = read_image(path)
out_scripted = torch.jit.script(read_image)(path)
torch.testing.assert_close(out, out_scripted, atol=0, rtol=0)
@pytest.mark.parametrize("scripted", (True, False))
def test_read_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
fun = torch.jit.script(read_file) if scripted else read_file
data = fun(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
read_file("tst")
def test_read_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
data = read_file(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write = torch.jit.script(write_file) if scripted else write_file
write(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
def test_write_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write_file(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
def test_read_1_bit_png(shape, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path)
img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
assert_equal(img1, img2)
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
@pytest.mark.parametrize(
"mode",
[
ImageReadMode.UNCHANGED,
ImageReadMode.GRAY,
],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path, mode)
img2 = read_image(image_path, mode)
assert_equal(img1, img2)
def test_read_interlaced_png():
imgs = list(get_images(INTERLACED_PNG, ".png"))
with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
assert not (im1.info.get("interlace") is im2.info.get("interlace"))
img1 = read_image(imgs[0])
img2 = read_image(imgs[1])
assert_equal(img1, img2)
@needs_cuda
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_jpegs_cuda(mode, scripted):
encoded_images = []
for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
if "cmyk" in jpeg_path:
continue
encoded_image = read_file(jpeg_path)
encoded_images.append(encoded_image)
decoded_images_cpu = decode_jpeg(encoded_images, mode=mode)
decode_fn = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
# test multithreaded decoding
# in the current version we prevent this by using a lock but we still want to test it
num_workers = 10
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(decode_fn, encoded_images, mode, "cuda") for _ in range(num_workers)]
decoded_images_threaded = [future.result() for future in futures]
assert len(decoded_images_threaded) == num_workers
for decoded_images in decoded_images_threaded:
assert len(decoded_images) == len(encoded_images)
for decoded_image_cuda, decoded_image_cpu in zip(decoded_images, decoded_images_cpu):
assert decoded_image_cuda.shape == decoded_image_cpu.shape
assert decoded_image_cuda.dtype == decoded_image_cpu.dtype == torch.uint8
assert (decoded_image_cuda.cpu().float() - decoded_image_cpu.cpu().float()).abs().mean() < 2
@needs_cuda
def test_decode_image_cuda_raises():
data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8)
with pytest.raises(RuntimeError):
decode_image(data)
@needs_cuda
def test_decode_jpeg_cuda_device_param():
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_file(path)
current_device = torch.cuda.current_device()
current_stream = torch.cuda.current_stream()
num_devices = torch.cuda.device_count()
devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)]
results = []
for device in devices:
results.append(decode_jpeg(data, device=device))
assert len(results) == len(devices)
for result in results:
assert torch.all(result.cpu() == results[0].cpu())
assert current_device == torch.cuda.current_device()
assert current_stream == torch.cuda.current_stream()
@needs_cuda
def test_decode_jpeg_cuda_errors():
data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(data.reshape(-1, 1), device="cuda")
with pytest.raises(ValueError, match="must be tensors"):
decode_jpeg([1, 2, 3])
with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"):
decode_jpeg(data.to("cuda"), device="cuda")
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(data.to(torch.float), device="cuda")
with pytest.raises(RuntimeError, match="Expected the device parameter to be a cuda device"):
torch.ops.image.decode_jpegs_cuda([data], ImageReadMode.UNCHANGED.value, "cpu")
with pytest.raises(ValueError, match="Input tensor must be a CPU tensor"):
decode_jpeg(
torch.empty((100,), dtype=torch.uint8, device="cuda"),
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cuda"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cuda"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
],
device="cuda",
)
with pytest.raises(ValueError, match="Input list must contain tensors on CPU"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8, device="cpu"),
torch.empty((100,), dtype=torch.uint8, device="cuda"),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((100,), dtype=torch.float32),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((1, 100), dtype=torch.uint8),
],
device="cuda",
)
with pytest.raises(RuntimeError, match="Error while decoding JPEG images"):
decode_jpeg(
[
torch.empty((100,), dtype=torch.uint8),
torch.empty((100,), dtype=torch.uint8),
],
device="cuda",
)
with pytest.raises(ValueError, match="Input list must contain at least one element"):
decode_jpeg([], device="cuda")
def test_encode_jpeg_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_jpeg(img_path, scripted):
img = read_image(img_path)
pil_img = F.to_pil_image(img)
buf = io.BytesIO()
pil_img.save(buf, format="JPEG", quality=75)
encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)
encode = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
for src_img in [img, img.contiguous()]:
encoded_jpeg_torch = encode(src_img, quality=75)
assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)
@needs_cuda
def test_encode_jpeg_cuda_device_param():
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_image(path)
current_device = torch.cuda.current_device()
current_stream = torch.cuda.current_stream()
num_devices = torch.cuda.device_count()
devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)]
results = []
for device in devices:
results.append(encode_jpeg(data.to(device=device)))
assert len(results) == len(devices)
for result in results:
assert torch.all(result.cpu() == results[0].cpu())
assert current_device == torch.cuda.current_device()
assert current_stream == torch.cuda.current_stream()
@needs_cuda
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("contiguous", (False, True))
def test_encode_jpeg_cuda(img_path, scripted, contiguous):
decoded_image_tv = read_image(img_path)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
if "cmyk" in img_path:
pytest.xfail("Encoding a CMYK jpeg isn't supported")
if decoded_image_tv.shape[0] == 1:
pytest.xfail("Decoding a grayscale jpeg isn't supported")
# For more detail as to why check out: https://github.com/NVIDIA/cuda-samples/issues/23#issuecomment-559283013
if contiguous:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.channels_last)[0]
encoded_jpeg_cuda_tv = encode_fn(decoded_image_tv.cuda(), quality=75)
decoded_jpeg_cuda_tv = decode_jpeg(encoded_jpeg_cuda_tv.cpu())
# the actual encoded bytestreams from libnvjpeg and libjpeg-turbo differ for the same quality
# instead, we re-decode the encoded image and compare to the original
abs_mean_diff = (decoded_jpeg_cuda_tv.float() - decoded_image_tv.float()).abs().mean().item()
assert abs_mean_diff < 3
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("scripted", (True, False))
@pytest.mark.parametrize("contiguous", (True, False))
def test_encode_jpegs_batch(scripted, contiguous, device):
if device == "cpu" and IS_MACOS:
pytest.skip("https://github.com/pytorch/vision/issues/8031")
decoded_images_tv = []
for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
if "cmyk" in jpeg_path:
continue
decoded_image = read_image(jpeg_path)
if decoded_image.shape[0] == 1:
continue
if contiguous:
decoded_image = decoded_image[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image = decoded_image[None].contiguous(memory_format=torch.channels_last)[0]
decoded_images_tv.append(decoded_image)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
decoded_images_tv_device = [img.to(device=device) for img in decoded_images_tv]
encoded_jpegs_tv_device = encode_fn(decoded_images_tv_device, quality=75)
encoded_jpegs_tv_device = [decode_jpeg(img.cpu()) for img in encoded_jpegs_tv_device]
for original, encoded_decoded in zip(decoded_images_tv, encoded_jpegs_tv_device):
c, h, w = original.shape
abs_mean_diff = (original.float() - encoded_decoded.float()).abs().mean().item()
assert abs_mean_diff < 3
# test multithreaded decoding
# in the current version we prevent this by using a lock but we still want to test it
num_workers = 10
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(encode_fn, decoded_images_tv_device) for _ in range(num_workers)]
encoded_images_threaded = [future.result() for future in futures]
assert len(encoded_images_threaded) == num_workers
for encoded_images in encoded_images_threaded:
assert len(decoded_images_tv_device) == len(encoded_images)
for i, (encoded_image_cuda, decoded_image_tv) in enumerate(zip(encoded_images, decoded_images_tv_device)):
# make sure all the threads produce identical outputs
assert torch.all(encoded_image_cuda == encoded_images_threaded[0][i])
# make sure the outputs are identical or close enough to baseline
decoded_cuda_encoded_image = decode_jpeg(encoded_image_cuda.cpu())
assert decoded_cuda_encoded_image.shape == decoded_image_tv.shape
assert decoded_cuda_encoded_image.dtype == decoded_image_tv.dtype
assert (decoded_cuda_encoded_image.cpu().float() - decoded_image_tv.cpu().float()).abs().mean() < 3
@needs_cuda
def test_single_encode_jpeg_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8, device="cuda"))
@needs_cuda
def test_batch_encode_jpegs_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input tensor should be on CPU"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
]
)
if torch.cuda.device_count() >= 2:
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:0"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:1"),
]
)
with pytest.raises(ValueError, match="encode_jpeg requires at least one input tensor when a list is passed"):
encode_jpeg([])
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_jpeg(img_path, tmpdir, scripted):
tmpdir = Path(tmpdir)
img = read_image(img_path)
pil_img = F.to_pil_image(img)
torch_jpeg = str(tmpdir / "torch.jpg")
pil_jpeg = str(tmpdir / "pil.jpg")
write = torch.jit.script(write_jpeg) if scripted else write_jpeg
write(img, torch_jpeg, quality=75)
pil_img.save(pil_jpeg, quality=75)
with open(torch_jpeg, "rb") as f:
torch_bytes = f.read()
with open(pil_jpeg, "rb") as f:
pil_bytes = f.read()
assert_equal(torch_bytes, pil_bytes)
def test_pathlib_support(tmpdir):
# Just make sure pathlib.Path is supported where relevant
jpeg_path = Path(next(get_images(ENCODE_JPEG, ".jpg")))
read_file(jpeg_path)
read_image(jpeg_path)
write_path = Path(tmpdir) / "whatever"
img = torch.randint(0, 10, size=(3, 4, 4), dtype=torch.uint8)
write_file(write_path, data=img.flatten())
write_jpeg(img, write_path)
write_png(img, write_path)
@pytest.mark.parametrize(
"name", ("gifgrid", "fire", "porsche", "treescap", "treescap-interlaced", "solid2", "x-trans", "earth")
)
@pytest.mark.parametrize("scripted", (True, False))
def test_decode_gif(tmpdir, name, scripted):
# Using test images from GIFLIB
# https://sourceforge.net/p/giflib/code/ci/master/tree/pic/, we assert PIL
# and torchvision decoded outputs are equal.
# We're not testing against "welcome2" because PIL and GIFLIB disagee on what
# the background color should be (likely a difference in the way they handle
# transparency?)
# 'earth' image is from wikipedia, licensed under CC BY-SA 3.0
# https://creativecommons.org/licenses/by-sa/3.0/
# it allows to properly test for transparency, TOP-LEFT offsets, and
# disposal modes.
path = tmpdir / f"{name}.gif"
if name == "earth":
if IN_OSS_CI:
# TODO: Fix this... one day.
pytest.skip("Skipping 'earth' test as it's flaky on OSS CI")
url = "https://upload.wikimedia.org/wikipedia/commons/2/2c/Rotating_earth_%28large%29.gif"
else:
url = f"https://sourceforge.net/p/giflib/code/ci/master/tree/pic/{name}.gif?format=raw"
with open(path, "wb") as f:
f.write(requests.get(url).content)
encoded_bytes = read_file(path)
f = torch.jit.script(decode_gif) if scripted else decode_gif
tv_out = f(encoded_bytes)
if tv_out.ndim == 3:
tv_out = tv_out[None]
assert tv_out.is_contiguous(memory_format=torch.channels_last)
# For some reason, not using Image.open() as a CM causes "ResourceWarning: unclosed file"
with Image.open(path) as pil_img:
pil_seq = ImageSequence.Iterator(pil_img)
for pil_frame, tv_frame in zip(pil_seq, tv_out):
pil_frame = F.pil_to_tensor(pil_frame.convert("RGB"))
torch.testing.assert_close(tv_frame, pil_frame, atol=0, rtol=0)
@pytest.mark.parametrize(
"decode_fun, match",
[
(decode_png, "Content is not png"),
(decode_jpeg, "Not a JPEG file"),
(decode_gif, re.escape("DGifOpenFileName() failed - 103")),
(decode_webp, "WebPGetFeatures failed."),
pytest.param(
decode_avif, "BMFF parsing failed", marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
),
pytest.param(
decode_heic,
"Invalid input: No 'ftyp' box",
marks=pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE),
),
],
)
def test_decode_bad_encoded_data(decode_fun, match):
encoded_data = torch.randint(0, 256, (100,), dtype=torch.uint8)
with pytest.raises(RuntimeError, match="Input tensor must be 1-dimensional"):
decode_fun(encoded_data[None])
with pytest.raises(RuntimeError, match="Input tensor must have uint8 data type"):
decode_fun(encoded_data.float())
with pytest.raises(RuntimeError, match="Input tensor must be contiguous"):
decode_fun(encoded_data[::2])
with pytest.raises(RuntimeError, match=match):
decode_fun(encoded_data)
@pytest.mark.parametrize("decode_fun", (decode_webp, decode_image))
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_webp(decode_fun, scripted):
encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".webp")))
if scripted:
decode_fun = torch.jit.script(decode_fun)
img = decode_fun(encoded_bytes)
assert img.shape == (3, 100, 100)
assert img[None].is_contiguous(memory_format=torch.channels_last)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
# This test is skipped by default because it requires webp images that we're not
# including within the repo. The test images were downloaded manually from the
# different pages of https://developers.google.com/speed/webp/gallery
@pytest.mark.skipif(not WEBP_TEST_IMAGES_DIR, reason="WEBP_TEST_IMAGES_DIR is not set")
@pytest.mark.parametrize("decode_fun", (decode_webp, decode_image))
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize(
"mode, pil_mode",
(
# Note that converting an RGBA image to RGB leads to bad results because the
# transparent pixels aren't necessarily set to "black" or "white", they can be
# random stuff. This is consistent with PIL results.
(ImageReadMode.RGB, "RGB"),
(ImageReadMode.RGB_ALPHA, "RGBA"),
(ImageReadMode.UNCHANGED, None),
),
)
@pytest.mark.parametrize("filename", Path(WEBP_TEST_IMAGES_DIR).glob("*.webp"), ids=lambda p: p.name)
def test_decode_webp_against_pil(decode_fun, scripted, mode, pil_mode, filename):
encoded_bytes = read_file(filename)
if scripted:
decode_fun = torch.jit.script(decode_fun)
img = decode_fun(encoded_bytes, mode=mode)
assert img[None].is_contiguous(memory_format=torch.channels_last)
pil_img = Image.open(filename).convert(pil_mode)
from_pil = F.pil_to_tensor(pil_img)
assert_equal(img, from_pil)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
@pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
@pytest.mark.parametrize("decode_fun", (decode_avif,))
def test_decode_avif(decode_fun):
encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".avif")))
img = decode_fun(encoded_bytes)
assert img.shape == (3, 100, 100)
assert img[None].is_contiguous(memory_format=torch.channels_last)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
# Note: decode_image fails because some of these files have a (valid) signature
# we don't recognize. We should probably use libmagic....
@pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
@pytest.mark.parametrize("decode_fun", (decode_avif, decode_heic))
@pytest.mark.parametrize(
"mode, pil_mode",
(
(ImageReadMode.RGB, "RGB"),
(ImageReadMode.RGB_ALPHA, "RGBA"),
(ImageReadMode.UNCHANGED, None),
),
)
@pytest.mark.parametrize(
"filename", Path("/home/nicolashug/dev/libavif/tests/data/").glob("*.avif"), ids=lambda p: p.name
)
def test_decode_avif_heic_against_pil(decode_fun, mode, pil_mode, filename):
if "reversed_dimg_order" in str(filename):
# Pillow properly decodes this one, but we don't (order of parts of the
# image is wrong). This is due to a bug that was recently fixed in
# libavif. Hopefully this test will end up passing soon with a new
# libavif version https://github.com/AOMediaCodec/libavif/issues/2311
pytest.xfail()
import pillow_avif # noqa
encoded_bytes = read_file(filename)
try:
img = decode_fun(encoded_bytes, mode=mode)
except RuntimeError as e:
if any(
s in str(e)
for s in (
"BMFF parsing failed",
"avifDecoderParse failed: ",
"file contains more than one image",
"no 'ispe' property",
"'iref' has double references",
"Invalid image grid",
"decode_heif failed: Invalid input: No 'meta' box",
)
):
pytest.skip(reason="Expected failure, that's OK")
else:
raise e
assert img[None].is_contiguous(memory_format=torch.channels_last)
if mode == ImageReadMode.RGB:
assert img.shape[0] == 3
if mode == ImageReadMode.RGB_ALPHA:
assert img.shape[0] == 4
if img.dtype == torch.uint16:
img = F.to_dtype(img, dtype=torch.uint8, scale=True)
try:
from_pil = F.pil_to_tensor(Image.open(filename).convert(pil_mode))
except RuntimeError as e:
if any(s in str(e) for s in ("Invalid image grid", "Failed to decode image: Not implemented")):
pytest.skip(reason="PIL failure")
else:
raise e
if True:
from torchvision.utils import make_grid
g = make_grid([img, from_pil])
F.to_pil_image(g).save((f"/home/nicolashug/out_images/{filename.name}.{pil_mode}.png"))
is_decode_heic = getattr(decode_fun, "__name__", getattr(decode_fun, "name", None)) == "decode_heic"
if mode == ImageReadMode.RGB and not is_decode_heic:
# We don't compare torchvision's AVIF against PIL for RGB because
# results look pretty different on RGBA images (other images are fine).
# The result on torchvision basically just plainly ignores the alpha
# channel, resuting in transparent pixels looking dark. PIL seems to be
# using a sort of k-nn thing (Take a look at the resuting images)
return
if filename.name == "sofa_grid1x5_420.avif" and is_decode_heic:
return
torch.testing.assert_close(img, from_pil, rtol=0, atol=3)
@pytest.mark.skipif(not IS_LINUX, reason=HEIC_AVIF_MESSAGE)
@pytest.mark.parametrize("decode_fun", (decode_heic,))
def test_decode_heic(decode_fun):
encoded_bytes = read_file(next(get_images(FAKEDATA_DIR, ".heic")))
img = decode_fun(encoded_bytes)
assert img.shape == (3, 100, 100)
assert img[None].is_contiguous(memory_format=torch.channels_last)
img += 123 # make sure image buffer wasn't freed by underlying decoding lib
@pytest.mark.parametrize("input_type", ("Path", "str", "tensor"))
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_image_path(input_type, scripted):
# Check that decode_image can support not just tensors as input
path = next(get_images(IMAGE_ROOT, ".jpg"))
if input_type == "Path":
input = Path(path)
elif input_type == "str":
input = path
elif input_type == "tensor":
input = read_file(path)
else:
raise ValueError("Oops")
if scripted and input_type == "Path":
pytest.xfail(reason="Can't pass a Path when scripting")
decode_fun = torch.jit.script(decode_image) if scripted else decode_image
decode_fun(input)
def test_mode_str():
# Make sure decode_image supports string modes. We just test decode_image,
# not all of the decoding functions, but they should all support that too.
# Torchscript fails when passing strings, which is expected.
path = next(get_images(IMAGE_ROOT, ".png"))
assert decode_image(path, mode="RGB").shape[0] == 3
assert decode_image(path, mode="rGb").shape[0] == 3
assert decode_image(path, mode="GRAY").shape[0] == 1
assert decode_image(path, mode="RGBA").shape[0] == 4
if __name__ == "__main__":
pytest.main([__file__])
|