1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
|
import contextlib
import functools
import operator
import os
import pkgutil
import platform
import sys
import warnings
from collections import OrderedDict
from tempfile import TemporaryDirectory
from typing import Any
import pytest
import torch
import torch.fx
import torch.nn as nn
from _utils_internal import get_relative_path
from common_utils import cpu_and_cuda, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
from PIL import Image
from torchvision import models, transforms
from torchvision.models import get_model_builder, list_models
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
def list_model_fns(module):
return [get_model_builder(name) for name in list_models(module)]
def _get_image(input_shape, real_image, device, dtype=None):
"""This routine loads a real or random image based on `real_image` argument.
Currently, the real image is utilized for the following list of models:
- `retinanet_resnet50_fpn`,
- `retinanet_resnet50_fpn_v2`,
- `keypointrcnn_resnet50_fpn`,
- `fasterrcnn_resnet50_fpn`,
- `fasterrcnn_resnet50_fpn_v2`,
- `fcos_resnet50_fpn`,
- `maskrcnn_resnet50_fpn`,
- `maskrcnn_resnet50_fpn_v2`,
in `test_classification_model` and `test_detection_model`.
To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
"""
if real_image:
# TODO: Maybe unify file discovery logic with test_image.py
GRACE_HOPPER = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
img = Image.open(GRACE_HOPPER)
original_width, original_height = img.size
# make the image square
img = img.crop((0, 0, original_width, original_width))
img = img.resize(input_shape[1:3])
convert_tensor = transforms.ToTensor()
image = convert_tensor(img)
assert tuple(image.size()) == input_shape
return image.to(device=device, dtype=dtype)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
return torch.rand(input_shape).to(device=device, dtype=dtype)
@pytest.fixture
def disable_weight_loading(mocker):
"""When testing models, the two slowest operations are the downloading of the weights to a file and loading them
into the model. Unless, you want to test against specific weights, these steps can be disabled without any
drawbacks.
Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
through all models in `torchvision.models` and will patch all occurrences of the function
`download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
no-ops.
.. warning:
Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
fixture if you want to compare the model output against reference values.
"""
starting_point = models
function_name = "load_state_dict_from_url"
method_name = "load_state_dict"
module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
for name in module_names:
module = sys.modules.get(name)
if not module:
continue
if function_name in module.__dict__:
targets.add(f"{module.__name__}.{function_name}")
targets.update(
{
f"{module.__name__}.{obj.__name__}.{method_name}"
for obj in module.__dict__.values()
if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
}
)
for target in targets:
# See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
with contextlib.suppress(AttributeError):
mocker.patch(target)
def _get_expected_file(name=None):
# Determine expected file based on environment
expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")
# Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
# We hardcode it here to avoid having to re-generate the reference files
expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
expected_file += "_expect.pkl"
if not ACCEPT and not os.path.exists(expected_file):
raise RuntimeError(
f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
"to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
"env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
)
return expected_file
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
"""Test that a python value matches the recorded contents of a file
based on a "check" name. The value must be
pickable with `torch.save`. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using an EXPECTTEST_ACCEPT=1 env variable.
"""
expected_file = _get_expected_file(name)
if ACCEPT:
filename = {os.path.basename(expected_file)}
print(f"Accepting updated output for {filename}:\n\n{output}")
torch.save(output, expected_file)
MAX_PICKLE_SIZE = 50 * 1000 # 50 KB
binary_size = os.path.getsize(expected_file)
if binary_size > MAX_PICKLE_SIZE:
raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
else:
expected = torch.load(expected_file, weights_only=True)
rtol = rtol or prec # keeping prec param for legacy reason, but could be removed ideally
atol = atol or prec
torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
"""Check that a nn.Module's results in TorchScript match eager and that it can be exported"""
def get_export_import_copy(m):
"""Save and load a TorchScript model"""
with TemporaryDirectory() as dir:
path = os.path.join(dir, "script.pt")
m.save(path)
imported = torch.jit.load(path)
return imported
sm = torch.jit.script(nn_module)
sm.eval()
if eager_out is None:
with torch.no_grad(), freeze_rng_state():
eager_out = nn_module(*args)
with torch.no_grad(), freeze_rng_state():
script_out = sm(*args)
if unwrapper:
script_out = unwrapper(script_out)
torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
m_import = get_export_import_copy(sm)
with torch.no_grad(), freeze_rng_state():
imported_script_out = m_import(*args)
if unwrapper:
imported_script_out = unwrapper(imported_script_out)
torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
def _check_fx_compatible(model, inputs, eager_out=None):
model_fx = torch.fx.symbolic_trace(model)
if eager_out is None:
eager_out = model(inputs)
with torch.no_grad(), freeze_rng_state():
fx_out = model_fx(inputs)
torch.testing.assert_close(eager_out, fx_out)
def _check_input_backprop(model, inputs):
if isinstance(inputs, list):
requires_grad = list()
for inp in inputs:
requires_grad.append(inp.requires_grad)
inp.requires_grad_(True)
else:
requires_grad = inputs.requires_grad
inputs.requires_grad_(True)
out = model(inputs)
if isinstance(out, dict):
out["out"].sum().backward()
else:
if isinstance(out[0], dict):
out[0]["scores"].sum().backward()
else:
out[0].sum().backward()
if isinstance(inputs, list):
for i, inp in enumerate(inputs):
assert inputs[i].grad is not None
inp.requires_grad_(requires_grad[i])
else:
assert inputs.grad is not None
inputs.requires_grad_(requires_grad)
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
script_model_unwrapper = {
"googlenet": lambda x: x.logits,
"inception_v3": lambda x: x.logits,
"fasterrcnn_resnet50_fpn": lambda x: x[1],
"fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
"maskrcnn_resnet50_fpn": lambda x: x[1],
"maskrcnn_resnet50_fpn_v2": lambda x: x[1],
"keypointrcnn_resnet50_fpn": lambda x: x[1],
"retinanet_resnet50_fpn": lambda x: x[1],
"retinanet_resnet50_fpn_v2": lambda x: x[1],
"ssd300_vgg16": lambda x: x[1],
"ssdlite320_mobilenet_v3_large": lambda x: x[1],
"fcos_resnet50_fpn": lambda x: x[1],
}
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO: investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
"inception_v3",
"resnet101",
"resnet152",
"wide_resnet101_2",
"deeplabv3_resnet50",
"deeplabv3_resnet101",
"deeplabv3_mobilenet_v3_large",
"fcn_resnet50",
"fcn_resnet101",
"lraspp_mobilenet_v3_large",
"maskrcnn_resnet50_fpn",
"maskrcnn_resnet50_fpn_v2",
"keypointrcnn_resnet50_fpn",
)
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
quantized_flaky_models = ("inception_v3", "resnet50")
# The tests for the following detection models are flaky.
# We run those tests on float64 to avoid floating point errors.
# FIXME: we shouldn't have to do that :'/
detection_flaky_models = ("keypointrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2")
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
"inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
"retinanet_resnet50_fpn": {
"num_classes": 20,
"score_thresh": 0.01,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"retinanet_resnet50_fpn_v2": {
"num_classes": 20,
"score_thresh": 0.01,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"keypointrcnn_resnet50_fpn": {
"num_classes": 2,
"min_size": 224,
"max_size": 224,
"box_score_thresh": 0.17,
"input_shape": (3, 224, 224),
"real_image": True,
},
"fasterrcnn_resnet50_fpn": {
"num_classes": 20,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"fasterrcnn_resnet50_fpn_v2": {
"num_classes": 20,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"fcos_resnet50_fpn": {
"num_classes": 2,
"score_thresh": 0.05,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"maskrcnn_resnet50_fpn": {
"num_classes": 10,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"maskrcnn_resnet50_fpn_v2": {
"num_classes": 10,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
"real_image": True,
},
"fasterrcnn_mobilenet_v3_large_fpn": {
"box_score_thresh": 0.02076,
},
"fasterrcnn_mobilenet_v3_large_320_fpn": {
"box_score_thresh": 0.02076,
"rpn_pre_nms_top_n_test": 1000,
"rpn_post_nms_top_n_test": 1000,
},
"vit_h_14": {
"image_size": 56,
"input_shape": (1, 3, 56, 56),
},
"mvit_v1_b": {
"input_shape": (1, 3, 16, 224, 224),
},
"mvit_v2_s": {
"input_shape": (1, 3, 16, 224, 224),
},
"s3d": {
"input_shape": (1, 3, 16, 224, 224),
},
"googlenet": {"init_weights": True},
}
# speeding up slow models:
slow_models = [
"convnext_base",
"convnext_large",
"resnext101_32x8d",
"resnext101_64x4d",
"wide_resnet101_2",
"efficientnet_b6",
"efficientnet_b7",
"efficientnet_v2_m",
"efficientnet_v2_l",
"regnet_y_16gf",
"regnet_y_32gf",
"regnet_y_128gf",
"regnet_x_16gf",
"regnet_x_32gf",
"swin_t",
"swin_s",
"swin_b",
"swin_v2_t",
"swin_v2_s",
"swin_v2_b",
]
for m in slow_models:
_model_params[m] = {"input_shape": (1, 3, 64, 64)}
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
skipped_big_models = {
"vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
"regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
"mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
"mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
}
def is_skippable(model_name, device):
if model_name not in skipped_big_models:
return False
platform_system = platform.system()
device_name = str(device).split(":")[0]
return (platform_system, device_name) in skipped_big_models[model_name]
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
"retinanet_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
},
"retinanet_resnet50_fpn_v2": {
"max_trainable": 5,
"n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
},
"keypointrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
},
"fasterrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
},
"fasterrcnn_resnet50_fpn_v2": {
"max_trainable": 5,
"n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
},
"maskrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
},
"maskrcnn_resnet50_fpn_v2": {
"max_trainable": 5,
"n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
},
"fasterrcnn_mobilenet_v3_large_fpn": {
"max_trainable": 6,
"n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
},
"fasterrcnn_mobilenet_v3_large_320_fpn": {
"max_trainable": 6,
"n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
},
"ssd300_vgg16": {
"max_trainable": 5,
"n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
},
"ssdlite320_mobilenet_v3_large": {
"max_trainable": 6,
"n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
},
"fcos_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
},
}
def _make_sliced_model(model, stop_layer):
layers = OrderedDict()
for name, layer in model.named_children():
layers[name] = layer
if name == stop_layer:
break
new_model = torch.nn.Sequential(layers)
return new_model
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
input_shape = (1, 3, 300, 300)
x = torch.rand(input_shape)
model1 = model_fn(num_classes=50, memory_efficient=True)
params = model1.state_dict()
num_params = sum(x.numel() for x in model1.parameters())
model1.eval()
out1 = model1(x)
out1.sum().backward()
num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
model2 = model_fn(num_classes=50, memory_efficient=False)
model2.load_state_dict(params)
model2.eval()
out2 = model2(x)
assert num_params == num_grad
torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)
_check_input_backprop(model1, x)
_check_input_backprop(model2, x)
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
# TODO improve tests to also check that each layer has the right dimensionality
model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
model = _make_sliced_model(model, stop_layer="layer4")
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
assert out.shape == (1, 2048, 7 * f, 7 * f)
def test_mobilenet_v2_residual_setting():
model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
assert out.shape[-1] == 1000
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
model = model_fn()
assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())
def get_gn(num_channels):
return nn.GroupNorm(1, num_channels)
model = model_fn(norm_layer=get_gn)
assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
assert any(isinstance(x, nn.GroupNorm) for x in model.modules())
def test_inception_v3_eval():
kwargs = {}
kwargs["transform_input"] = True
kwargs["aux_logits"] = True
kwargs["init_weights"] = False
name = "inception_v3"
model = models.Inception3(**kwargs)
model.aux_logits = False
model.AuxLogits = None
model = model.eval()
x = torch.rand(1, 3, 299, 299)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
_check_input_backprop(model, x)
def test_fasterrcnn_double():
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.double()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, dtype=torch.float64)
model_input = [x]
out = model(model_input)
assert model_input[0] is x
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
_check_input_backprop(model, model_input)
def test_googlenet_eval():
kwargs = {}
kwargs["transform_input"] = True
kwargs["aux_logits"] = True
kwargs["init_weights"] = False
name = "googlenet"
model = models.GoogLeNet(**kwargs)
model.aux_logits = False
model.aux1 = None
model.aux2 = None
model = model.eval()
x = torch.rand(1, 3, 224, 224)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
_check_input_backprop(model, x)
@needs_cuda
def test_fasterrcnn_switch_devices():
def checkOut(out):
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.cuda()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, device="cuda")
model_input = [x]
out = model(model_input)
assert model_input[0] is x
checkOut(out)
with torch.cuda.amp.autocast():
out = model(model_input)
checkOut(out)
_check_input_backprop(model, model_input)
# now switch to cpu and make sure it works
model.cpu()
x = x.cpu()
out_cpu = model([x])
checkOut(out_cpu)
_check_input_backprop(model, [x])
def test_generalizedrcnn_transform_repr():
min_size, max_size = 224, 299
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
t = models.detection.transform.GeneralizedRCNNTransform(
min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
)
# Check integrity of object __repr__ attribute
expected_string = "GeneralizedRCNNTransform("
_indent = "\n "
expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
expected_string += "mode='bilinear')\n)"
assert t.__repr__() == expected_string
test_vit_conv_stem_configs = [
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]
def vitc_b_16(**kwargs: Any):
return models.VisionTransformer(
image_size=224,
patch_size=16,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
conv_stem_configs=test_vit_conv_stem_configs,
**kwargs,
)
@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_vitc_models(model_fn, dev):
test_classification_model(model_fn, dev)
@torch.backends.cudnn.flags(allow_tf32=False) # see: https://github.com/pytorch/vision/issues/7618
@pytest.mark.parametrize("model_fn", list_model_fns(models))
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_classification_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"input_shape": (1, 3, 224, 224),
}
model_name = model_fn.__name__
if SKIP_BIG_MODEL and is_skippable(model_name, dev):
pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
kwargs = {**defaults, **_model_params.get(model_name, {})}
num_classes = kwargs.get("num_classes")
input_shape = kwargs.pop("input_shape")
real_image = kwargs.pop("real_image", False)
model = model_fn(**kwargs)
model.eval().to(device=dev)
x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
out = model(x)
# FIXME: this if/else is nasty and only here to please our CI prior to the
# release. We rethink these tests altogether.
if model_name == "resnet101":
prec = 0.2
else:
# FIXME: this is probably still way too high.
prec = 0.1
_assert_expected(out.cpu(), model_name, prec=prec)
assert out.shape[-1] == num_classes
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
if dev == "cuda":
with torch.cuda.amp.autocast():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == 50
_check_input_backprop(model, x)
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_segmentation_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 10,
"weights_backbone": None,
"input_shape": (1, 3, 32, 32),
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
model = model_fn(**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
with torch.no_grad(), freeze_rng_state():
out = model(x)
def check_out(out):
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(out.cpu(), model_name, prec=prec)
except AssertionError:
# Unfortunately some segmentation models are flaky with autocast
# so instead of validating the probability scores, check that the class
# predictions match.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file, weights_only=True)
torch.testing.assert_close(
out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
)
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out["out"])
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
if dev == "cuda":
with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out["out"])
if not full_validation:
msg = (
f"The output of {test_segmentation_model.__name__} could only be partially validated. "
"This is likely due to unit-test flakiness, but you may "
"want to do additional manual checks if you made "
"significant changes to the codebase."
)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
_check_input_backprop(model, x)
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_detection_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"weights_backbone": None,
"input_shape": (3, 300, 300),
}
model_name = model_fn.__name__
if model_name in detection_flaky_models:
dtype = torch.float64
else:
dtype = torch.get_default_dtype()
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
real_image = kwargs.pop("real_image", False)
model = model_fn(**kwargs)
model.eval().to(device=dev, dtype=dtype)
x = _get_image(input_shape=input_shape, real_image=real_image, device=dev, dtype=dtype)
model_input = [x]
with torch.no_grad(), freeze_rng_state():
out = model(model_input)
assert model_input[0] is x
def check_out(out):
assert len(out) == 1
def compact(tensor):
tensor = tensor.cpu()
size = tensor.size()
elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
if elements_per_sample > 30:
return compute_mean_std(tensor)
else:
return subsample_tensor(tensor)
def subsample_tensor(tensor):
num_elems = tensor.size(0)
num_samples = 20
if num_elems <= num_samples:
return tensor
ith_index = num_elems // num_samples
return tensor[ith_index - 1 :: ith_index]
def compute_mean_std(tensor):
# can't compute mean of integral tensor
tensor = tensor.to(torch.double)
mean = torch.mean(tensor)
std = torch.std(tensor)
return {"mean": mean, "std": std}
output = map_nested_tensor_object(out, tensor_map_fn=compact)
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(output, model_name, prec=prec)
except AssertionError:
# Unfortunately detection models are flaky due to the unstable sort
# in NMS. If matching across all outputs fails, use the same approach
# as in NMSTester.test_nms_cuda to see if this is caused by duplicate
# scores.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file, weights_only=True)
torch.testing.assert_close(
output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
)
# Note: Fmassa proposed turning off NMS by adapting the threshold
# and then using the Hungarian algorithm as in DETR to find the
# best match between output and expected boxes and eliminate some
# of the flakiness. Worth exploring.
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out)
_check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
if dev == "cuda":
with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
out = model(model_input)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out)
if not full_validation:
msg = (
f"The output of {test_detection_model.__name__} could only be partially validated. "
"This is likely due to unit-test flakiness, but you may "
"want to do additional manual checks if you made "
"significant changes to the codebase."
)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
_check_input_backprop(model, model_input)
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
def test_detection_model_validation(model_fn):
set_rng_seed(0)
model = model_fn(num_classes=50, weights=None, weights_backbone=None)
input_shape = (3, 300, 300)
x = [torch.rand(input_shape)]
# validate that targets are present in training
with pytest.raises(AssertionError):
model(x)
# validate type
targets = [{"boxes": 0.0}]
with pytest.raises(AssertionError):
model(x, targets=targets)
# validate boxes shape
for boxes in (torch.rand((4,)), torch.rand((1, 5))):
targets = [{"boxes": boxes}]
with pytest.raises(AssertionError):
model(x, targets=targets)
# validate that no degenerate boxes are present
boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
targets = [{"boxes": boxes}]
with pytest.raises(AssertionError):
model(x, targets=targets)
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_video_model(model_fn, dev):
set_rng_seed(0)
# the default input shape is
# bs * num_channels * clip_len * h *w
defaults = {
"input_shape": (1, 3, 4, 112, 112),
"num_classes": 50,
}
model_name = model_fn.__name__
if SKIP_BIG_MODEL and is_skippable(model_name, dev):
pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
kwargs = {**defaults, **_model_params.get(model_name, {})}
num_classes = kwargs.get("num_classes")
input_shape = kwargs.pop("input_shape")
# test both basicblock and Bottleneck
model = model_fn(**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == num_classes
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
assert out.shape[-1] == num_classes
if dev == "cuda":
with torch.cuda.amp.autocast():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == num_classes
_check_input_backprop(model, x)
@pytest.mark.skipif(
not (
"fbgemm" in torch.backends.quantized.supported_engines
and "qnnpack" in torch.backends.quantized.supported_engines
),
reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
def test_quantized_classification_model(model_fn):
set_rng_seed(0)
defaults = {
"num_classes": 5,
"input_shape": (1, 3, 224, 224),
"quantize": True,
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
# First check if quantize=True provides models that can run with input data
model = model_fn(**kwargs)
model.eval()
x = torch.rand(input_shape)
out = model(x)
if model_name not in quantized_flaky_models:
_assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
assert out.shape[-1] == 5
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
else:
try:
torch.jit.script(model)
except Exception as e:
raise AssertionError("model cannot be scripted.") from e
kwargs["quantize"] = False
for eval_mode in [True, False]:
model = model_fn(**kwargs)
if eval_mode:
model.eval()
model.qconfig = torch.ao.quantization.default_qconfig
else:
model.train()
model.qconfig = torch.ao.quantization.default_qat_qconfig
model.fuse_model(is_qat=not eval_mode)
if eval_mode:
torch.ao.quantization.prepare(model, inplace=True)
else:
torch.ao.quantization.prepare_qat(model, inplace=True)
model.eval()
torch.ao.quantization.convert(model, inplace=True)
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
model_name = model_fn.__name__
max_trainable = _model_tests_values[model_name]["max_trainable"]
n_trainable_params = []
for trainable_layers in range(0, max_trainable + 1):
model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]
@needs_cuda
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_fn, scripted):
torch.manual_seed(0)
# We need very small images, otherwise the pickle size would exceed the 50KB
# As a result we need to override the correlation pyramid to not downsample
# too much, otherwise we would get nan values (effective H and W would be
# reduced to 1)
corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)
model = model_fn(corr_block=corr_block).eval().to("cuda")
if scripted:
model = torch.jit.script(model)
bs = 1
img1 = torch.rand(bs, 3, 80, 72).cuda()
img2 = torch.rand(bs, 3, 80, 72).cuda()
preds = model(img1, img2)
flow_pred = preds[-1]
# Tolerance is fairly high, but there are 2 * H * W outputs to check
# The .pkl were generated on the AWS cluter, on the CI it looks like the results are slightly different
_assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
if __name__ == "__main__":
pytest.main([__file__])
|