1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
import pytest
import torch
import torchvision.models
from common_utils import assert_equal
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
from torchvision.ops import MultiScaleRoIAlign
class TestModelsDetectionNegativeSamples:
def _make_empty_sample(self, add_masks=False, add_keypoints=False):
images = [torch.rand((3, 100, 100), dtype=torch.float32)]
boxes = torch.zeros((0, 4), dtype=torch.float32)
negative_target = {
"boxes": boxes,
"labels": torch.zeros(0, dtype=torch.int64),
"image_id": 4,
"area": (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
"iscrowd": torch.zeros((0,), dtype=torch.int64),
}
if add_masks:
negative_target["masks"] = torch.zeros(0, 100, 100, dtype=torch.uint8)
if add_keypoints:
negative_target["keypoints"] = torch.zeros(17, 0, 3, dtype=torch.float32)
targets = [negative_target]
return images, targets
def test_targets_to_anchors(self):
_, targets = self._make_empty_sample()
anchors = [torch.randint(-50, 50, (3, 4), dtype=torch.float32)]
anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
rpn_head = RPNHead(4, rpn_anchor_generator.num_anchors_per_location()[0])
head = RegionProposalNetwork(rpn_anchor_generator, rpn_head, 0.5, 0.3, 256, 0.5, 2000, 2000, 0.7, 0.05)
labels, matched_gt_boxes = head.assign_targets_to_anchors(anchors, targets)
assert labels[0].sum() == 0
assert labels[0].shape == torch.Size([anchors[0].shape[0]])
assert labels[0].dtype == torch.float32
assert matched_gt_boxes[0].sum() == 0
assert matched_gt_boxes[0].shape == anchors[0].shape
assert matched_gt_boxes[0].dtype == torch.float32
def test_assign_targets_to_proposals(self):
proposals = [torch.randint(-50, 50, (20, 4), dtype=torch.float32)]
gt_boxes = [torch.zeros((0, 4), dtype=torch.float32)]
gt_labels = [torch.tensor([[0]], dtype=torch.int64)]
box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
resolution = box_roi_pool.output_size[0]
representation_size = 1024
box_head = TwoMLPHead(4 * resolution**2, representation_size)
representation_size = 1024
box_predictor = FastRCNNPredictor(representation_size, 2)
roi_heads = RoIHeads(
# Box
box_roi_pool,
box_head,
box_predictor,
0.5,
0.5,
512,
0.25,
None,
0.05,
0.5,
100,
)
matched_idxs, labels = roi_heads.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
assert matched_idxs[0].sum() == 0
assert matched_idxs[0].shape == torch.Size([proposals[0].shape[0]])
assert matched_idxs[0].dtype == torch.int64
assert labels[0].sum() == 0
assert labels[0].shape == torch.Size([proposals[0].shape[0]])
assert labels[0].dtype == torch.int64
@pytest.mark.parametrize(
"name",
[
"fasterrcnn_resnet50_fpn",
"fasterrcnn_mobilenet_v3_large_fpn",
"fasterrcnn_mobilenet_v3_large_320_fpn",
],
)
def test_forward_negative_sample_frcnn(self, name):
model = torchvision.models.get_model(
name, weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)
images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
def test_forward_negative_sample_mrcnn(self):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)
images, targets = self._make_empty_sample(add_masks=True)
loss_dict = model(images, targets)
assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
assert_equal(loss_dict["loss_mask"], torch.tensor(0.0))
def test_forward_negative_sample_krcnn(self):
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)
images, targets = self._make_empty_sample(add_keypoints=True)
loss_dict = model(images, targets)
assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
assert_equal(loss_dict["loss_keypoint"], torch.tensor(0.0))
def test_forward_negative_sample_retinanet(self):
model = torchvision.models.detection.retinanet_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)
images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
def test_forward_negative_sample_fcos(self):
model = torchvision.models.detection.fcos_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)
images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
assert_equal(loss_dict["bbox_ctrness"], torch.tensor(0.0))
def test_forward_negative_sample_ssd(self):
model = torchvision.models.detection.ssd300_vgg16(weights=None, weights_backbone=None, num_classes=2)
images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
if __name__ == "__main__":
pytest.main([__file__])
|