1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
import io
from collections import OrderedDict
from typing import List, Optional, Tuple
import pytest
import torch
from common_utils import assert_equal, set_rng_seed
from torchvision import models, ops
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.ops import _register_onnx_ops
# In environments without onnxruntime we prefer to
# invoke all tests in the repo and have this one skipped rather than fail.
onnxruntime = pytest.importorskip("onnxruntime")
class TestONNXExporter:
@classmethod
def setup_class(cls):
torch.manual_seed(123)
def run_model(
self,
model,
inputs_list,
do_constant_folding=True,
dynamic_axes=None,
output_names=None,
input_names=None,
opset_version: Optional[int] = None,
):
if opset_version is None:
opset_version = _register_onnx_ops.BASE_ONNX_OPSET_VERSION
model.eval()
onnx_io = io.BytesIO()
if isinstance(inputs_list[0][-1], dict):
torch_onnx_input = inputs_list[0] + ({},)
else:
torch_onnx_input = inputs_list[0]
# export to onnx with the first input
torch.onnx.export(
model,
torch_onnx_input,
onnx_io,
do_constant_folding=do_constant_folding,
opset_version=opset_version,
dynamic_axes=dynamic_axes,
input_names=input_names,
output_names=output_names,
verbose=True,
)
# validate the exported model with onnx runtime
for test_inputs in inputs_list:
with torch.no_grad():
if isinstance(test_inputs, torch.Tensor) or isinstance(test_inputs, list):
test_inputs = (test_inputs,)
test_ouputs = model(*test_inputs)
if isinstance(test_ouputs, torch.Tensor):
test_ouputs = (test_ouputs,)
self.ort_validate(onnx_io, test_inputs, test_ouputs)
def ort_validate(self, onnx_io, inputs, outputs):
inputs, _ = torch.jit._flatten(inputs)
outputs, _ = torch.jit._flatten(outputs)
def to_numpy(tensor):
if tensor.requires_grad:
return tensor.detach().cpu().numpy()
else:
return tensor.cpu().numpy()
inputs = list(map(to_numpy, inputs))
outputs = list(map(to_numpy, outputs))
ort_session = onnxruntime.InferenceSession(onnx_io.getvalue(), providers=onnxruntime.get_available_providers())
# compute onnxruntime output prediction
ort_inputs = {ort_session.get_inputs()[i].name: inpt for i, inpt in enumerate(inputs)}
ort_outs = ort_session.run(None, ort_inputs)
for i in range(0, len(outputs)):
torch.testing.assert_close(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
def test_nms(self):
num_boxes = 100
boxes = torch.rand(num_boxes, 4)
boxes[:, 2:] += boxes[:, :2]
scores = torch.randn(num_boxes)
class Module(torch.nn.Module):
def forward(self, boxes, scores):
return ops.nms(boxes, scores, 0.5)
self.run_model(Module(), [(boxes, scores)])
def test_batched_nms(self):
num_boxes = 100
boxes = torch.rand(num_boxes, 4)
boxes[:, 2:] += boxes[:, :2]
scores = torch.randn(num_boxes)
idxs = torch.randint(0, 5, size=(num_boxes,))
class Module(torch.nn.Module):
def forward(self, boxes, scores, idxs):
return ops.batched_nms(boxes, scores, idxs, 0.5)
self.run_model(Module(), [(boxes, scores, idxs)])
def test_clip_boxes_to_image(self):
boxes = torch.randn(5, 4) * 500
boxes[:, 2:] += boxes[:, :2]
size = torch.randn(200, 300)
size_2 = torch.randn(300, 400)
class Module(torch.nn.Module):
def forward(self, boxes, size):
return ops.boxes.clip_boxes_to_image(boxes, size.shape)
self.run_model(
Module(), [(boxes, size), (boxes, size_2)], input_names=["boxes", "size"], dynamic_axes={"size": [0, 1]}
)
def test_roi_align(self):
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 2)
self.run_model(model, [(x, single_roi)])
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, -1)
self.run_model(model, [(x, single_roi)])
def test_roi_align_aligned(self):
supported_onnx_version = _register_onnx_ops._ONNX_OPSET_VERSION_16
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((2, 2), 2.5, -1, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
def test_roi_align_malformed_boxes(self):
supported_onnx_version = _register_onnx_ops._ONNX_OPSET_VERSION_16
x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
def test_roi_pool(self):
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
pool_h = 5
pool_w = 5
model = ops.RoIPool((pool_h, pool_w), 2)
self.run_model(model, [(x, rois)])
def test_resize_images(self):
class TransformModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
def forward(self_module, images):
return self_module.transform.resize(images, None)[0]
input = torch.rand(3, 10, 20)
input_test = torch.rand(3, 100, 150)
self.run_model(
TransformModule(), [(input,), (input_test,)], input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]}
)
def test_transform_images(self):
class TransformModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
def forward(self_module, images):
return self_module.transform(images)[0].tensors
input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
self.run_model(TransformModule(), [(input,), (input_test,)])
def _init_test_generalized_rcnn_transform(self):
min_size = 100
max_size = 200
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
return transform
def _init_test_rpn(self):
anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
out_channels = 256
rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
rpn_fg_iou_thresh = 0.7
rpn_bg_iou_thresh = 0.3
rpn_batch_size_per_image = 256
rpn_positive_fraction = 0.5
rpn_pre_nms_top_n = dict(training=2000, testing=1000)
rpn_post_nms_top_n = dict(training=2000, testing=1000)
rpn_nms_thresh = 0.7
rpn_score_thresh = 0.0
rpn = RegionProposalNetwork(
rpn_anchor_generator,
rpn_head,
rpn_fg_iou_thresh,
rpn_bg_iou_thresh,
rpn_batch_size_per_image,
rpn_positive_fraction,
rpn_pre_nms_top_n,
rpn_post_nms_top_n,
rpn_nms_thresh,
score_thresh=rpn_score_thresh,
)
return rpn
def _init_test_roi_heads_faster_rcnn(self):
out_channels = 256
num_classes = 91
box_fg_iou_thresh = 0.5
box_bg_iou_thresh = 0.5
box_batch_size_per_image = 512
box_positive_fraction = 0.25
bbox_reg_weights = None
box_score_thresh = 0.05
box_nms_thresh = 0.5
box_detections_per_img = 100
box_roi_pool = ops.MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
resolution = box_roi_pool.output_size[0]
representation_size = 1024
box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
representation_size = 1024
box_predictor = FastRCNNPredictor(representation_size, num_classes)
roi_heads = RoIHeads(
box_roi_pool,
box_head,
box_predictor,
box_fg_iou_thresh,
box_bg_iou_thresh,
box_batch_size_per_image,
box_positive_fraction,
bbox_reg_weights,
box_score_thresh,
box_nms_thresh,
box_detections_per_img,
)
return roi_heads
def get_features(self, images):
s0, s1 = images.shape[-2:]
features = [
("0", torch.rand(2, 256, s0 // 4, s1 // 4)),
("1", torch.rand(2, 256, s0 // 8, s1 // 8)),
("2", torch.rand(2, 256, s0 // 16, s1 // 16)),
("3", torch.rand(2, 256, s0 // 32, s1 // 32)),
("4", torch.rand(2, 256, s0 // 64, s1 // 64)),
]
features = OrderedDict(features)
return features
def test_rpn(self):
set_rng_seed(0)
class RPNModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.rpn = self._init_test_rpn()
def forward(self_module, images, features):
images = ImageList(images, [i.shape[-2:] for i in images])
return self_module.rpn(images, features)
images = torch.rand(2, 3, 150, 150)
features = self.get_features(images)
images2 = torch.rand(2, 3, 80, 80)
test_features = self.get_features(images2)
model = RPNModule()
model.eval()
model(images, features)
self.run_model(
model,
[(images, features), (images2, test_features)],
input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
dynamic_axes={
"input1": [0, 1, 2, 3],
"input2": [0, 1, 2, 3],
"input3": [0, 1, 2, 3],
"input4": [0, 1, 2, 3],
"input5": [0, 1, 2, 3],
"input6": [0, 1, 2, 3],
},
)
def test_multi_scale_roi_align(self):
class TransformModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = ops.MultiScaleRoIAlign(["feat1", "feat2"], 3, 2)
self.image_sizes = [(512, 512)]
def forward(self, input, boxes):
return self.model(input, boxes, self.image_sizes)
i = OrderedDict()
i["feat1"] = torch.rand(1, 5, 64, 64)
i["feat2"] = torch.rand(1, 5, 16, 16)
boxes = torch.rand(6, 4) * 256
boxes[:, 2:] += boxes[:, :2]
i1 = OrderedDict()
i1["feat1"] = torch.rand(1, 5, 64, 64)
i1["feat2"] = torch.rand(1, 5, 16, 16)
boxes1 = torch.rand(6, 4) * 256
boxes1[:, 2:] += boxes1[:, :2]
self.run_model(
TransformModule(),
[
(
i,
[boxes],
),
(
i1,
[boxes1],
),
],
)
def test_roi_heads(self):
class RoiHeadsModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
self_module.rpn = self._init_test_rpn()
self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()
def forward(self_module, images, features):
original_image_sizes = [img.shape[-2:] for img in images]
images = ImageList(images, [i.shape[-2:] for i in images])
proposals, _ = self_module.rpn(images, features)
detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
detections = self_module.transform.postprocess(detections, images.image_sizes, original_image_sizes)
return detections
images = torch.rand(2, 3, 100, 100)
features = self.get_features(images)
images2 = torch.rand(2, 3, 150, 150)
test_features = self.get_features(images2)
model = RoiHeadsModule()
model.eval()
model(images, features)
self.run_model(
model,
[(images, features), (images2, test_features)],
input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
dynamic_axes={
"input1": [0, 1, 2, 3],
"input2": [0, 1, 2, 3],
"input3": [0, 1, 2, 3],
"input4": [0, 1, 2, 3],
"input5": [0, 1, 2, 3],
"input6": [0, 1, 2, 3],
},
)
def get_image(self, rel_path: str, size: Tuple[int, int]) -> torch.Tensor:
import os
from PIL import Image
from torchvision.transforms import functional as F
data_dir = os.path.join(os.path.dirname(__file__), "assets")
path = os.path.join(data_dir, *rel_path.split("/"))
image = Image.open(path).convert("RGB").resize(size, Image.BILINEAR)
return F.convert_image_dtype(F.pil_to_tensor(image))
def get_test_images(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
return (
[self.get_image("encode_jpeg/grace_hopper_517x606.jpg", (100, 320))],
[self.get_image("fakedata/logos/rgb_pytorch.png", (250, 380))],
)
def test_faster_rcnn(self):
images, test_images = self.get_test_images()
dummy_image = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(
weights=models.detection.faster_rcnn.FasterRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(images,), (test_images,), (dummy_image,)],
input_names=["images_tensors"],
output_names=["outputs"],
dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
)
# Test exported model for an image with no detections on other images
self.run_model(
model,
[(dummy_image,), (images,)],
input_names=["images_tensors"],
output_names=["outputs"],
dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
)
# Verify that paste_mask_in_image beahves the same in tracing.
# This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
# (since jit_trace witll call _onnx_paste_masks_in_image).
def test_paste_mask_in_image(self):
masks = torch.rand(10, 1, 26, 26)
boxes = torch.rand(10, 4)
boxes[:, 2:] += torch.rand(10, 2)
boxes *= 50
o_im_s = (100, 100)
from torchvision.models.detection.roi_heads import paste_masks_in_image
out = paste_masks_in_image(masks, boxes, o_im_s)
jit_trace = torch.jit.trace(
paste_masks_in_image, (masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])
)
out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])
assert torch.all(out.eq(out_trace))
masks2 = torch.rand(20, 1, 26, 26)
boxes2 = torch.rand(20, 4)
boxes2[:, 2:] += torch.rand(20, 2)
boxes2 *= 100
o_im_s2 = (200, 200)
from torchvision.models.detection.roi_heads import paste_masks_in_image
out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])
assert torch.all(out2.eq(out_trace2))
def test_mask_rcnn(self):
images, test_images = self.get_test_images()
dummy_image = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(
weights=models.detection.mask_rcnn.MaskRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(images,), (test_images,), (dummy_image,)],
input_names=["images_tensors"],
output_names=["boxes", "labels", "scores", "masks"],
dynamic_axes={
"images_tensors": [0, 1, 2],
"boxes": [0, 1],
"labels": [0],
"scores": [0],
"masks": [0, 1, 2],
},
)
# Test exported model for an image with no detections on other images
self.run_model(
model,
[(dummy_image,), (images,)],
input_names=["images_tensors"],
output_names=["boxes", "labels", "scores", "masks"],
dynamic_axes={
"images_tensors": [0, 1, 2],
"boxes": [0, 1],
"labels": [0],
"scores": [0],
"masks": [0, 1, 2],
},
)
# Verify that heatmaps_to_keypoints behaves the same in tracing.
# This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
# (since jit_trace witll call _heatmaps_to_keypoints).
def test_heatmaps_to_keypoints(self):
maps = torch.rand(10, 1, 26, 26)
rois = torch.rand(10, 4)
from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
out = heatmaps_to_keypoints(maps, rois)
jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
out_trace = jit_trace(maps, rois)
assert_equal(out[0], out_trace[0])
assert_equal(out[1], out_trace[1])
maps2 = torch.rand(20, 2, 21, 21)
rois2 = torch.rand(20, 4)
from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
out2 = heatmaps_to_keypoints(maps2, rois2)
out_trace2 = jit_trace(maps2, rois2)
assert_equal(out2[0], out_trace2[0])
assert_equal(out2[1], out_trace2[1])
def test_keypoint_rcnn(self):
images, test_images = self.get_test_images()
dummy_images = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(
weights=models.detection.keypoint_rcnn.KeypointRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
self.run_model(
model,
[(images,), (test_images,), (dummy_images,)],
input_names=["images_tensors"],
output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
dynamic_axes={"images_tensors": [0, 1, 2]},
)
self.run_model(
model,
[(dummy_images,), (test_images,)],
input_names=["images_tensors"],
output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
dynamic_axes={"images_tensors": [0, 1, 2]},
)
def test_shufflenet_v2_dynamic_axes(self):
model = models.shufflenet_v2_x0_5(weights=models.ShuffleNet_V2_X0_5_Weights.DEFAULT)
dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)
self.run_model(
model,
[(dummy_input,), (test_inputs,)],
input_names=["input_images"],
output_names=["output"],
dynamic_axes={"input_images": {0: "batch_size"}, "output": {0: "batch_size"}},
)
if __name__ == "__main__":
pytest.main([__file__])
|