1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
|
import os
import sys
import numpy as np
import PIL.Image
import pytest
import torch
from common_utils import (
_assert_approx_equal_tensor_to_pil,
_assert_equal_tensor_to_pil,
_create_data,
_create_data_batch,
assert_equal,
cpu_and_cuda,
float_dtypes,
get_tmp_dir,
int_dtypes,
)
from torchvision import transforms as T
from torchvision.transforms import functional as F, InterpolationMode
from torchvision.transforms.autoaugment import _apply_op
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
InterpolationMode.NEAREST,
InterpolationMode.NEAREST_EXACT,
InterpolationMode.BILINEAR,
InterpolationMode.BICUBIC,
)
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
torch.manual_seed(12)
out1 = transform(tensor)
torch.manual_seed(12)
out2 = s_transform(tensor)
assert_equal(out1, out2, msg=msg)
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
torch.manual_seed(12)
transformed_batch = transform(batch_tensors)
for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
torch.manual_seed(12)
transformed_img = transform(img_tensor)
assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
torch.manual_seed(12)
s_transformed_batch = s_transform(batch_tensors)
assert_equal(transformed_batch, s_transformed_batch, msg=msg)
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
fn_kwargs = fn_kwargs or {}
tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
transformed_tensor = f(tensor, **fn_kwargs)
transformed_pil_img = f(pil_img, **fn_kwargs)
if test_exact_match:
_assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
else:
_assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
meth_kwargs = meth_kwargs or {}
# test for class interface
f = transform_cls(**meth_kwargs)
scripted_fn = torch.jit.script(f)
tensor, pil_img = _create_data(26, 34, channels, device=device)
# set seed to reproduce the same transformation for tensor and PIL image
torch.manual_seed(12)
transformed_tensor = f(tensor)
torch.manual_seed(12)
transformed_pil_img = f(pil_img)
if test_exact_match:
_assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
else:
_assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script)
batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
_test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)
with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
_test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
_test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
def _test_fn_save_load(fn, tmpdir):
scripted_fn = torch.jit.script(fn)
p = os.path.join(tmpdir, f"t_op_list_{getattr(fn, '__name__', fn.__class__.__name__)}.pt")
scripted_fn.save(p)
_ = torch.jit.load(p)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"func,method,fn_kwargs,match_kwargs",
[
(F.hflip, T.RandomHorizontalFlip, None, {}),
(F.vflip, T.RandomVerticalFlip, None, {}),
(F.invert, T.RandomInvert, None, {}),
(F.posterize, T.RandomPosterize, {"bits": 4}, {}),
(F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
(F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
(
F.autocontrast,
T.RandomAutocontrast,
None,
{"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
),
(F.equalize, T.RandomEqualize, None, {}),
],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
_test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("channels", [1, 3])
class TestColorJitter:
@pytest.fixture(autouse=True)
def set_random_seed(self, seed):
torch.random.manual_seed(seed)
@pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
def test_color_jitter_brightness(self, brightness, device, channels):
tol = 1.0 + 1e-10
meth_kwargs = {"brightness": brightness}
_test_class_op(
T.ColorJitter,
meth_kwargs=meth_kwargs,
test_exact_match=False,
device=device,
tol=tol,
agg_method="max",
channels=channels,
)
@pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
def test_color_jitter_contrast(self, contrast, device, channels):
tol = 1.0 + 1e-10
meth_kwargs = {"contrast": contrast}
_test_class_op(
T.ColorJitter,
meth_kwargs=meth_kwargs,
test_exact_match=False,
device=device,
tol=tol,
agg_method="max",
channels=channels,
)
@pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
def test_color_jitter_saturation(self, saturation, device, channels):
tol = 1.0 + 1e-10
meth_kwargs = {"saturation": saturation}
_test_class_op(
T.ColorJitter,
meth_kwargs=meth_kwargs,
test_exact_match=False,
device=device,
tol=tol,
agg_method="max",
channels=channels,
)
@pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
def test_color_jitter_hue(self, hue, device, channels):
meth_kwargs = {"hue": hue}
_test_class_op(
T.ColorJitter,
meth_kwargs=meth_kwargs,
test_exact_match=False,
device=device,
tol=16.1,
agg_method="max",
channels=channels,
)
def test_color_jitter_all(self, device, channels):
# All 4 parameters together
meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
_test_class_op(
T.ColorJitter,
meth_kwargs=meth_kwargs,
test_exact_match=False,
device=device,
tol=12.1,
agg_method="max",
channels=channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
def test_pad(m, mul, device):
fill = 127 if m == "constant" else 0
# Test functional.pad (PIL and Tensor) with padding as single int
_test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
# Test functional.pad and transforms.Pad with padding as [int, ]
fn_kwargs = meth_kwargs = {
"padding": [mul * 2],
"fill": fill,
"padding_mode": m,
}
_test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
# Test functional.pad and transforms.Pad with padding as list
fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
_test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
# Test functional.pad and transforms.Pad with padding as tuple
fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
_test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_crop(device):
fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
# Test transforms.RandomCrop with size and padding as tuple
meth_kwargs = {
"size": (4, 5),
"padding": (4, 4),
"pad_if_needed": True,
}
_test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
# Test transforms.functional.crop including outside the image area
fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5} # top
_test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5} # left
_test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5} # bottom
_test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5} # right
_test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15} # all
_test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"padding_config",
[
{"padding_mode": "constant", "fill": 0},
{"padding_mode": "constant", "fill": 10},
{"padding_mode": "edge"},
{"padding_mode": "reflect"},
],
)
@pytest.mark.parametrize("pad_if_needed", [True, False])
@pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
@pytest.mark.parametrize("size", [5, [5], [6, 6]])
def test_random_crop(size, padding, pad_if_needed, padding_config, device):
config = dict(padding_config)
config["size"] = size
config["padding"] = padding
config["pad_if_needed"] = pad_if_needed
_test_class_op(T.RandomCrop, device, meth_kwargs=config)
def test_random_crop_save_load(tmpdir):
fn = T.RandomCrop(32, [4], pad_if_needed=True)
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_center_crop(device, tmpdir):
fn_kwargs = {"output_size": (4, 5)}
meth_kwargs = {"size": (4, 5)}
_test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
fn_kwargs = {"output_size": (5,)}
meth_kwargs = {"size": (5,)}
_test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
# Test torchscript of transforms.CenterCrop with size as int
f = T.CenterCrop(size=5)
scripted_fn = torch.jit.script(f)
scripted_fn(tensor)
# Test torchscript of transforms.CenterCrop with size as [int, ]
f = T.CenterCrop(size=[5])
scripted_fn = torch.jit.script(f)
scripted_fn(tensor)
# Test torchscript of transforms.CenterCrop with size as tuple
f = T.CenterCrop(size=(6, 6))
scripted_fn = torch.jit.script(f)
scripted_fn(tensor)
def test_center_crop_save_load(tmpdir):
fn = T.CenterCrop(size=[5])
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"fn, method, out_length",
[
# test_five_crop
(F.five_crop, T.FiveCrop, 5),
# test_ten_crop
(F.ten_crop, T.TenCrop, 10),
],
)
@pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
def test_x_crop(fn, method, out_length, size, device):
meth_kwargs = fn_kwargs = {"size": size}
scripted_fn = torch.jit.script(fn)
tensor, pil_img = _create_data(height=20, width=20, device=device)
transformed_t_list = fn(tensor, **fn_kwargs)
transformed_p_list = fn(pil_img, **fn_kwargs)
assert len(transformed_t_list) == len(transformed_p_list)
assert len(transformed_t_list) == out_length
for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
_assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)
transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
assert len(transformed_t_list) == len(transformed_t_list_script)
assert len(transformed_t_list_script) == out_length
for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
assert_equal(transformed_tensor, transformed_tensor_script)
# test for class interface
fn = method(**meth_kwargs)
scripted_fn = torch.jit.script(fn)
output = scripted_fn(tensor)
assert len(output) == len(transformed_t_list_script)
# test on batch of tensors
batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
torch.manual_seed(12)
transformed_batch_list = fn(batch_tensors)
for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
torch.manual_seed(12)
transformed_img_list = fn(img_tensor)
for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
assert_equal(transformed_img, transformed_batch[i, ...])
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
def test_x_crop_save_load(method, tmpdir):
fn = getattr(T, method)(size=[5])
_test_fn_save_load(fn, tmpdir)
class TestResize:
@pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
def test_resize_int(self, size):
# TODO: Minimal check for bug-fix, improve this later
x = torch.rand(3, 32, 46)
t = T.Resize(size=size, antialias=True)
y = t(x)
# If size is an int, smaller edge of the image will be matched to this number.
# i.e, if height > width, then image will be rescaled to (size * height / width, size).
assert isinstance(y, torch.Tensor)
assert y.shape[1] == size
assert y.shape[2] == int(size * 46 / 32)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
@pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
@pytest.mark.parametrize("max_size", [None, 35, 1000])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
def test_resize_scripted(self, dt, size, max_size, interpolation, device):
tensor, _ = _create_data(height=34, width=36, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
if max_size is not None and len(size) != 1:
pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")
transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size, antialias=True)
s_transform = torch.jit.script(transform)
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
def test_resize_save_load(self, tmpdir):
fn = T.Resize(size=[32], antialias=True)
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
@pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
@pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC, NEAREST_EXACT])
@pytest.mark.parametrize("antialias", [None, True, False])
def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):
if antialias and interpolation in {NEAREST, NEAREST_EXACT}:
pytest.skip(f"Can not resize if interpolation mode is {interpolation} and antialias=True")
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.RandomResizedCrop(
size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
)
s_transform = torch.jit.script(transform)
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
def test_resized_crop_save_load(self, tmpdir):
fn = T.RandomResizedCrop(size=[32], antialias=True)
_test_fn_save_load(fn, tmpdir)
def _test_random_affine_helper(device, **kwargs):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.RandomAffine(**kwargs)
s_transform = torch.jit.script(transform)
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
def test_random_affine_save_load(tmpdir):
fn = T.RandomAffine(degrees=45.0)
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
def test_random_affine_shear(device, interpolation, shear):
_test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
def test_random_affine_scale(device, interpolation, scale):
_test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
def test_random_affine_translate(device, interpolation, translate):
_test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
def test_random_affine_degrees(device, interpolation, degrees):
_test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_affine_fill(device, interpolation, fill):
_test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
s_transform = torch.jit.script(transform)
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
def test_random_rotate_save_load(tmpdir):
fn = T.RandomRotation(degrees=45.0)
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_perspective(device, distortion_scale, interpolation, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
s_transform = torch.jit.script(transform)
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
def test_random_perspective_save_load(tmpdir):
fn = T.RandomPerspective()
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"Klass, meth_kwargs",
[(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
def test_to_grayscale(device, Klass, meth_kwargs):
tol = 1.0 + 1e-10
_test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
def test_convert_image_dtype(device, in_dtype, out_dtype):
tensor, _ = _create_data(26, 34, device=device)
batch_tensors = torch.rand(4, 3, 44, 56, device=device)
in_tensor = tensor.to(in_dtype)
in_batch_tensors = batch_tensors.to(in_dtype)
fn = T.ConvertImageDtype(dtype=out_dtype)
scripted_fn = torch.jit.script(fn)
if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
in_dtype == torch.float64 and out_dtype == torch.int64
):
with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
_test_transform_vs_scripted(fn, scripted_fn, in_tensor)
with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
return
_test_transform_vs_scripted(fn, scripted_fn, in_tensor)
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
def test_convert_image_dtype_save_load(tmpdir):
fn = T.ConvertImageDtype(dtype=torch.uint8)
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_autoaugment(device, policy, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.AutoAugment(policy=policy, fill=fill)
s_transform = torch.jit.script(transform)
for _ in range(25):
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_randaugment(device, num_ops, magnitude, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
s_transform = torch.jit.script(transform)
for _ in range(25):
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_trivialaugmentwide(device, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
transform = T.TrivialAugmentWide(fill=fill)
s_transform = torch.jit.script(transform)
for _ in range(25):
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_augmix(device, fill):
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
class DeterministicAugMix(T.AugMix):
def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
# patch the method to ensure that the order of rand calls doesn't affect the outcome
return params.softmax(dim=-1)
transform = DeterministicAugMix(fill=fill)
s_transform = torch.jit.script(transform)
for _ in range(25):
_test_transform_vs_scripted(transform, s_transform, tensor)
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
def test_autoaugment_save_load(augmentation, tmpdir):
fn = augmentation()
_test_fn_save_load(fn, tmpdir)
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
# We check that torchvision's implementation of shear is equivalent
# to official CIFAR10 autoaugment implementation:
# https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
image_size = 32
def shear(pil_img, level, mode, resample):
if mode == "X":
matrix = (1, level, 0, 0, 1, 0)
elif mode == "Y":
matrix = (1, 0, 0, level, 1, 0)
return pil_img.transform((image_size, image_size), PIL.Image.AFFINE, matrix, resample=resample)
t_img, pil_img = _create_data(image_size, image_size)
resample_pil = {
F.InterpolationMode.NEAREST: PIL.Image.NEAREST,
F.InterpolationMode.BILINEAR: PIL.Image.BILINEAR,
}[interpolation]
level = 0.3
expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)
# Check pil output vs expected pil
out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
assert out == expected_out
if interpolation == F.InterpolationMode.BILINEAR:
# We skip bilinear mode for tensors as
# affine transformation results are not exactly the same
# between tensors and pil images
# MAE as around 1.40
# Max Abs error can be 163 or 170
return
# Check tensor output vs expected pil
out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
_assert_approx_equal_tensor_to_pil(out, expected_out)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"config",
[
{},
{"value": 1},
{"value": 0.2},
{"value": "random"},
{"value": (1, 1, 1)},
{"value": (0.2, 0.2, 0.2)},
{"value": [1, 1, 1]},
{"value": [0.2, 0.2, 0.2]},
{"value": "random", "ratio": (0.1, 0.2)},
],
)
def test_random_erasing(device, config):
tensor, _ = _create_data(24, 32, channels=3, device=device)
batch_tensors = torch.rand(4, 3, 44, 56, device=device)
fn = T.RandomErasing(**config)
scripted_fn = torch.jit.script(fn)
_test_transform_vs_scripted(fn, scripted_fn, tensor)
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
def test_random_erasing_save_load(tmpdir):
fn = T.RandomErasing(value=0.2)
_test_fn_save_load(fn, tmpdir)
def test_random_erasing_with_invalid_data():
img = torch.rand(3, 60, 60)
# Test Set 0: invalid value
random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
random_erasing(img)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_normalize(device, tmpdir):
fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
tensor, _ = _create_data(26, 34, device=device)
with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
fn(tensor)
batch_tensors = torch.rand(4, 3, 44, 56, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0
# test for class interface
scripted_fn = torch.jit.script(fn)
_test_transform_vs_scripted(fn, scripted_fn, tensor)
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_linear_transformation(device, tmpdir):
c, h, w = 3, 24, 32
tensor, _ = _create_data(h, w, channels=c, device=device)
matrix = torch.rand(c * h * w, c * h * w, device=device)
mean_vector = torch.rand(c * h * w, device=device)
fn = T.LinearTransformation(matrix, mean_vector)
scripted_fn = torch.jit.script(fn)
_test_transform_vs_scripted(fn, scripted_fn, tensor)
batch_tensors = torch.rand(4, c, h, w, device=device)
# We skip some tests from _test_transform_vs_scripted_on_batch as
# results for scripted and non-scripted transformations are not exactly the same
torch.manual_seed(12)
transformed_batch = fn(batch_tensors)
torch.manual_seed(12)
s_transformed_batch = scripted_fn(batch_tensors)
assert_equal(transformed_batch, s_transformed_batch)
scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_compose(device):
tensor, _ = _create_data(26, 34, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0
transforms = T.Compose(
[
T.CenterCrop(10),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
s_transforms = torch.nn.Sequential(*transforms.transforms)
scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
t = T.Compose(
[
lambda x: x,
]
)
with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
torch.jit.script(t)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_random_apply(device):
tensor, _ = _create_data(26, 34, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0
transforms = T.RandomApply(
[
T.RandomHorizontalFlip(),
T.ColorJitter(),
],
p=0.4,
)
s_transforms = T.RandomApply(
torch.nn.ModuleList(
[
T.RandomHorizontalFlip(),
T.ColorJitter(),
]
),
p=0.4,
)
scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
if device == "cpu":
# Can't check this twice, otherwise
# "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
transforms = T.RandomApply(
[
T.ColorJitter(),
],
p=0.3,
)
with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
torch.jit.script(transforms)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"meth_kwargs",
[
{"kernel_size": 3, "sigma": 0.75},
{"kernel_size": 23, "sigma": [0.1, 2.0]},
{"kernel_size": 23, "sigma": (0.1, 2.0)},
{"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
{"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
{"kernel_size": [23], "sigma": 0.75},
],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_gaussian_blur(device, channels, meth_kwargs):
if all(
[
device == "cuda",
channels == 1,
meth_kwargs["kernel_size"] in [23, [23]],
torch.version.cuda == "11.3",
sys.platform in ("win32", "cygwin"),
]
):
pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")
tol = 1.0 + 1e-10
torch.manual_seed(12)
_test_class_op(
T.GaussianBlur,
meth_kwargs=meth_kwargs,
channels=channels,
test_exact_match=False,
device=device,
agg_method="max",
tol=tol,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"fill",
[
1,
1.0,
[1],
[1.0],
(1,),
(1.0,),
[1, 2, 3],
[1.0, 2.0, 3.0],
(1, 2, 3),
(1.0, 2.0, 3.0),
],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_elastic_transform(device, channels, fill):
if isinstance(fill, (list, tuple)) and len(fill) > 1 and channels == 1:
# For this the test would correctly fail, since the number of channels in the image does not match `fill`.
# Thus, this is not an issue in the transform, but rather a problem of parametrization that just gives the
# product of `fill` and `channels`.
return
_test_class_op(
T.ElasticTransform,
meth_kwargs=dict(fill=fill),
channels=channels,
device=device,
)
|