1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
import random
import warnings
import numpy as np
import pytest
import torch
from common_utils import assert_equal
from torchvision.transforms import Compose
try:
from scipy import stats
except ImportError:
stats = None
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
import torchvision.transforms._transforms_video as transforms
class TestVideoTransforms:
def test_random_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.RandomCropVideo((oheight, owidth)),
]
)(clip)
assert result.size(2) == oheight
assert result.size(3) == owidth
transforms.RandomCropVideo((oheight, owidth)).__repr__()
def test_random_resized_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.RandomResizedCropVideo((oheight, owidth)),
]
)(clip)
assert result.size(2) == oheight
assert result.size(3) == owidth
transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()
def test_center_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
oh1 = (height - oheight) // 2
ow1 = (width - owidth) // 2
clipNarrow = clip[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth, :]
clipNarrow.fill_(0)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert result.sum().item() == 0, msg
oheight += 1
owidth += 1
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
sum1 = result.sum()
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert sum1.item() > 1, msg
oheight += 1
owidth += 1
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
sum2 = result.sum()
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert sum2.item() > 1, msg
assert sum2.item() > sum1.item(), msg
@pytest.mark.skipif(stats is None, reason="scipy.stats is not available")
@pytest.mark.parametrize("channels", [1, 3])
def test_normalize_video(self, channels):
def samples_from_standard_normal(tensor):
p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
return p_value > 0.0001
random_state = random.getstate()
random.seed(42)
numFrames = random.randint(4, 128)
height = random.randint(32, 256)
width = random.randint(32, 256)
mean = random.random()
std = random.random()
clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
mean = [clip[c].mean().item() for c in range(channels)]
std = [clip[c].std().item() for c in range(channels)]
normalized = transforms.NormalizeVideo(mean, std)(clip)
assert samples_from_standard_normal(normalized)
random.setstate(random_state)
# Checking the optional in-place behaviour
tensor = torch.rand((3, 128, 16, 16))
tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
assert_equal(tensor, tensor_inplace)
transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()
def test_to_tensor_video(self):
numFrames, height, width = 64, 4, 4
trans = transforms.ToTensorVideo()
with pytest.raises(TypeError):
np_rng = np.random.RandomState(0)
trans(np_rng.rand(numFrames, height, width, 1).tolist())
with pytest.raises(TypeError):
trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))
with pytest.raises(ValueError):
trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((height, width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((3), dtype=torch.uint8))
trans.__repr__()
@pytest.mark.parametrize("p", (0, 1))
def test_random_horizontal_flip_video(self, p):
clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
hclip = clip.flip(-1)
out = transforms.RandomHorizontalFlipVideo(p=p)(clip)
if p == 0:
torch.testing.assert_close(out, clip)
elif p == 1:
torch.testing.assert_close(out, hclip)
transforms.RandomHorizontalFlipVideo().__repr__()
if __name__ == "__main__":
pytest.main([__file__])
|