1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
from copy import deepcopy
import pytest
import torch
from common_utils import assert_equal, make_bounding_boxes, make_image, make_segmentation_mask, make_video
from PIL import Image
from torchvision import tv_tensors
@pytest.fixture(autouse=True)
def restore_tensor_return_type():
# This is for security, as we should already be restoring the default manually in each test anyway
# (at least at the time of writing...)
yield
tv_tensors.set_return_type("Tensor")
@pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)])
def test_image_instance(data):
image = tv_tensors.Image(data)
assert isinstance(image, torch.Tensor)
assert image.ndim == 3 and image.shape[0] == 3
@pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)])
def test_mask_instance(data):
mask = tv_tensors.Mask(data)
assert isinstance(mask, torch.Tensor)
assert mask.ndim == 3 and mask.shape[0] == 1
@pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]], [1, 2, 3, 4]])
@pytest.mark.parametrize(
"format", ["XYXY", "CXCYWH", tv_tensors.BoundingBoxFormat.XYXY, tv_tensors.BoundingBoxFormat.XYWH]
)
def test_bbox_instance(data, format):
bboxes = tv_tensors.BoundingBoxes(data, format=format, canvas_size=(32, 32))
assert isinstance(bboxes, torch.Tensor)
assert bboxes.ndim == 2 and bboxes.shape[1] == 4
if isinstance(format, str):
format = tv_tensors.BoundingBoxFormat[(format.upper())]
assert bboxes.format == format
def test_bbox_dim_error():
data_3d = [[[1, 2, 3, 4]]]
with pytest.raises(ValueError, match="Expected a 1D or 2D tensor, got 3D"):
tv_tensors.BoundingBoxes(data_3d, format="XYXY", canvas_size=(32, 32))
@pytest.mark.parametrize(
("data", "input_requires_grad", "expected_requires_grad"),
[
([[[0.0, 1.0], [0.0, 1.0]]], None, False),
([[[0.0, 1.0], [0.0, 1.0]]], False, False),
([[[0.0, 1.0], [0.0, 1.0]]], True, True),
(torch.rand(3, 16, 16, requires_grad=False), None, False),
(torch.rand(3, 16, 16, requires_grad=False), False, False),
(torch.rand(3, 16, 16, requires_grad=False), True, True),
(torch.rand(3, 16, 16, requires_grad=True), None, True),
(torch.rand(3, 16, 16, requires_grad=True), False, False),
(torch.rand(3, 16, 16, requires_grad=True), True, True),
],
)
def test_new_requires_grad(data, input_requires_grad, expected_requires_grad):
tv_tensor = tv_tensors.Image(data, requires_grad=input_requires_grad)
assert tv_tensor.requires_grad is expected_requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_isinstance(make_input):
assert isinstance(make_input(), torch.Tensor)
def test_wrapping_no_copy():
tensor = torch.rand(3, 16, 16)
image = tv_tensors.Image(tensor)
assert image.data_ptr() == tensor.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_to_wrapping(make_input):
dp = make_input()
dp_to = dp.to(torch.float64)
assert type(dp_to) is type(dp)
assert dp_to.dtype is torch.float64
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_to_tv_tensor_reference(make_input, return_type):
tensor = torch.rand((3, 16, 16), dtype=torch.float64)
dp = make_input()
with tv_tensors.set_return_type(return_type):
tensor_to = tensor.to(dp)
assert type(tensor_to) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
assert tensor_to.dtype is dp.dtype
assert type(tensor) is torch.Tensor
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_clone_wrapping(make_input, return_type):
dp = make_input()
with tv_tensors.set_return_type(return_type):
dp_clone = dp.clone()
assert type(dp_clone) is type(dp)
assert dp_clone.data_ptr() != dp.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_requires_grad__wrapping(make_input, return_type):
dp = make_input(dtype=torch.float)
assert not dp.requires_grad
with tv_tensors.set_return_type(return_type):
dp_requires_grad = dp.requires_grad_(True)
assert type(dp_requires_grad) is type(dp)
assert dp.requires_grad
assert dp_requires_grad.requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_detach_wrapping(make_input, return_type):
dp = make_input(dtype=torch.float).requires_grad_(True)
with tv_tensors.set_return_type(return_type):
dp_detached = dp.detach()
assert type(dp_detached) is type(dp)
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_force_subclass_with_metadata(return_type):
# Sanity checks for the ops in _FORCE_TORCHFUNCTION_SUBCLASS and tv_tensors with metadata
# Largely the same as above, we additionally check that the metadata is preserved
format, canvas_size = "XYXY", (32, 32)
bbox = tv_tensors.BoundingBoxes([[0, 0, 5, 5], [2, 2, 7, 7]], format=format, canvas_size=canvas_size)
tv_tensors.set_return_type(return_type)
bbox = bbox.clone()
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
bbox = bbox.to(torch.float64)
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
bbox = bbox.detach()
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
assert not bbox.requires_grad
bbox.requires_grad_(True)
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
assert bbox.requires_grad
tv_tensors.set_return_type("tensor")
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_other_op_no_wrapping(make_input, return_type):
dp = make_input()
with tv_tensors.set_return_type(return_type):
# any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
output = dp * 2
assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize(
"op",
[
lambda t: t.numpy(),
lambda t: t.tolist(),
lambda t: t.max(dim=-1),
],
)
def test_no_tensor_output_op_no_wrapping(make_input, op):
dp = make_input()
output = op(dp)
assert type(output) is not type(dp)
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_inplace_op_no_wrapping(make_input, return_type):
dp = make_input()
original_type = type(dp)
with tv_tensors.set_return_type(return_type):
output = dp.add_(0)
assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
assert type(dp) is original_type
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_wrap(make_input):
dp = make_input()
# any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
output = dp * 2
dp_new = tv_tensors.wrap(output, like=dp)
assert type(dp_new) is type(dp)
assert dp_new.data_ptr() == output.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("requires_grad", [False, True])
def test_deepcopy(make_input, requires_grad):
dp = make_input(dtype=torch.float)
dp.requires_grad_(requires_grad)
dp_deepcopied = deepcopy(dp)
assert dp_deepcopied is not dp
assert dp_deepcopied.data_ptr() != dp.data_ptr()
assert_equal(dp_deepcopied, dp)
assert type(dp_deepcopied) is type(dp)
assert dp_deepcopied.requires_grad is requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
@pytest.mark.parametrize(
"op",
(
lambda dp: dp + torch.rand(*dp.shape),
lambda dp: torch.rand(*dp.shape) + dp,
lambda dp: dp * torch.rand(*dp.shape),
lambda dp: torch.rand(*dp.shape) * dp,
lambda dp: dp + 3,
lambda dp: 3 + dp,
lambda dp: dp + dp,
lambda dp: dp.sum(),
lambda dp: dp.reshape(-1),
lambda dp: dp.int(),
lambda dp: torch.stack([dp, dp]),
lambda dp: torch.chunk(dp, 2)[0],
lambda dp: torch.unbind(dp)[0],
),
)
def test_usual_operations(make_input, return_type, op):
dp = make_input()
with tv_tensors.set_return_type(return_type):
out = op(dp)
assert type(out) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
if isinstance(dp, tv_tensors.BoundingBoxes) and return_type == "TVTensor":
assert hasattr(out, "format")
assert hasattr(out, "canvas_size")
def test_subclasses():
img = make_image()
masks = make_segmentation_mask()
with pytest.raises(TypeError, match="unsupported operand"):
img + masks
def test_set_return_type():
img = make_image()
assert type(img + 3) is torch.Tensor
with tv_tensors.set_return_type("TVTensor"):
assert type(img + 3) is tv_tensors.Image
assert type(img + 3) is torch.Tensor
tv_tensors.set_return_type("TVTensor")
assert type(img + 3) is tv_tensors.Image
with tv_tensors.set_return_type("tensor"):
assert type(img + 3) is torch.Tensor
with tv_tensors.set_return_type("TVTensor"):
assert type(img + 3) is tv_tensors.Image
tv_tensors.set_return_type("tensor")
assert type(img + 3) is torch.Tensor
assert type(img + 3) is torch.Tensor
# Exiting a context manager will restore the return type as it was prior to entering it,
# regardless of whether the "global" tv_tensors.set_return_type() was called within the context manager.
assert type(img + 3) is tv_tensors.Image
tv_tensors.set_return_type("tensor")
def test_return_type_input():
img = make_image()
# Case-insensitive
with tv_tensors.set_return_type("tvtensor"):
assert type(img + 3) is tv_tensors.Image
with pytest.raises(ValueError, match="return_type must be"):
tv_tensors.set_return_type("typo")
tv_tensors.set_return_type("tensor")
|