1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
import os
import re
import sys
import tempfile
from io import BytesIO
import numpy as np
import pytest
import torch
import torchvision.transforms.functional as F
import torchvision.utils as utils
from common_utils import assert_equal, cpu_and_cuda
from PIL import __version__ as PILLOW_VERSION, Image, ImageColor
from torchvision.transforms.v2.functional import to_dtype
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
keypoints = torch.tensor([[[10, 10], [5, 5], [2, 2]], [[20, 20], [30, 30], [3, 3]]], dtype=torch.float)
def test_make_grid_not_inplace():
t = torch.rand(5, 3, 10, 10)
t_clone = t.clone()
utils.make_grid(t, normalize=False)
assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
utils.make_grid(t, normalize=True, scale_each=False)
assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
utils.make_grid(t, normalize=True, scale_each=True)
assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
def test_normalize_in_make_grid():
t = torch.rand(5, 3, 10, 10) * 255
norm_max = torch.tensor(1.0)
norm_min = torch.tensor(0.0)
grid = utils.make_grid(t, normalize=True)
grid_max = torch.max(grid)
grid_min = torch.min(grid)
# Rounding the result to one decimal for comparison
n_digits = 1
rounded_grid_max = torch.round(grid_max * 10**n_digits) / (10**n_digits)
rounded_grid_min = torch.round(grid_min * 10**n_digits) / (10**n_digits)
assert_equal(norm_max, rounded_grid_max, msg="Normalized max is not equal to 1")
assert_equal(norm_min, rounded_grid_min, msg="Normalized min is not equal to 0")
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image():
with tempfile.NamedTemporaryFile(suffix=".png") as f:
t = torch.rand(2, 3, 64, 64)
utils.save_image(t, f.name)
assert os.path.exists(f.name), "The image is not present after save"
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_single_pixel():
with tempfile.NamedTemporaryFile(suffix=".png") as f:
t = torch.rand(1, 3, 1, 1)
utils.save_image(t, f.name)
assert os.path.exists(f.name), "The pixel image is not present after save"
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_file_object():
with tempfile.NamedTemporaryFile(suffix=".png") as f:
t = torch.rand(2, 3, 64, 64)
utils.save_image(t, f.name)
img_orig = Image.open(f.name)
fp = BytesIO()
utils.save_image(t, fp, format="png")
img_bytes = Image.open(fp)
assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
def test_save_image_single_pixel_file_object():
with tempfile.NamedTemporaryFile(suffix=".png") as f:
t = torch.rand(1, 3, 1, 1)
utils.save_image(t, f.name)
img_orig = Image.open(f.name)
fp = BytesIO()
utils.save_image(t, fp, format="png")
img_bytes = Image.open(fp)
assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")
def test_draw_boxes():
img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
img_cp = img.clone()
boxes_cp = boxes.clone()
labels = ["a", "b", "c", "d"]
colors = ["green", "#FF00FF", (0, 255, 0), "red"]
result = utils.draw_bounding_boxes(img, boxes, labels=labels, colors=colors, fill=True)
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_util.png")
if not os.path.exists(path):
res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
res.save(path)
if PILLOW_VERSION >= (10, 1):
# The reference image is only valid for new PIL versions
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
# Check if modification is not in place
assert_equal(boxes, boxes_cp)
assert_equal(img, img_cp)
@pytest.mark.skipif(PILLOW_VERSION < (10, 1), reason="The reference image is only valid for PIL >= 10.1")
def test_draw_boxes_with_coloured_labels():
img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
labels = ["a", "b", "c", "d"]
colors = ["green", "#FF00FF", (0, 255, 0), "red"]
label_colors = ["green", "red", (0, 255, 0), "#FF00FF"]
result = utils.draw_bounding_boxes(img, boxes, labels=labels, colors=colors, fill=True, label_colors=label_colors)
path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_different_label_colors.png"
)
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
@pytest.mark.parametrize("fill", [True, False])
def test_draw_boxes_dtypes(fill):
img_uint8 = torch.full((3, 100, 100), 255, dtype=torch.uint8)
out_uint8 = utils.draw_bounding_boxes(img_uint8, boxes, fill=fill)
assert img_uint8 is not out_uint8
assert out_uint8.dtype == torch.uint8
img_float = to_dtype(img_uint8, torch.float, scale=True)
out_float = utils.draw_bounding_boxes(img_float, boxes, fill=fill)
assert img_float is not out_float
assert out_float.is_floating_point()
torch.testing.assert_close(out_uint8, to_dtype(out_float, torch.uint8, scale=True), rtol=0, atol=1)
@pytest.mark.parametrize("colors", [None, ["red", "blue", "#FF00FF", (1, 34, 122)], "red", "#FF00FF", (1, 34, 122)])
def test_draw_boxes_colors(colors):
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors=colors)
with pytest.raises(ValueError, match="Number of colors must be equal or larger than the number of objects"):
utils.draw_bounding_boxes(image=img, boxes=boxes, colors=[])
def test_draw_boxes_vanilla():
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
img_cp = img.clone()
boxes_cp = boxes.clone()
result = utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors="white")
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_vanilla.png")
if not os.path.exists(path):
res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
res.save(path)
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
# Check if modification is not in place
assert_equal(boxes, boxes_cp)
assert_equal(img, img_cp)
def test_draw_boxes_grayscale():
img = torch.full((1, 4, 4), fill_value=255, dtype=torch.uint8)
boxes = torch.tensor([[0, 0, 3, 3]], dtype=torch.int64)
bboxed_img = utils.draw_bounding_boxes(image=img, boxes=boxes, colors=["#1BBC9B"])
assert bboxed_img.size(0) == 3
def test_draw_invalid_boxes():
img_tp = ((1, 1, 1), (1, 2, 3))
img_wrong2 = torch.full((1, 3, 5, 5), 255, dtype=torch.uint8)
img_correct = torch.zeros((3, 10, 10), dtype=torch.uint8)
boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
boxes_wrong = torch.tensor([[10, 10, 4, 5], [30, 20, 10, 5]], dtype=torch.float)
labels_wrong = ["one", "two"]
colors_wrong = ["pink", "blue"]
with pytest.raises(TypeError, match="Tensor expected"):
utils.draw_bounding_boxes(img_tp, boxes)
with pytest.raises(ValueError, match="Pass individual images, not batches"):
utils.draw_bounding_boxes(img_wrong2, boxes)
with pytest.raises(ValueError, match="Only grayscale and RGB images are supported"):
utils.draw_bounding_boxes(img_wrong2[0][:2], boxes)
with pytest.raises(ValueError, match="Number of boxes"):
utils.draw_bounding_boxes(img_correct, boxes, labels_wrong)
with pytest.raises(ValueError, match="Number of colors"):
utils.draw_bounding_boxes(img_correct, boxes, colors=colors_wrong)
with pytest.raises(ValueError, match="Boxes need to be in"):
utils.draw_bounding_boxes(img_correct, boxes_wrong)
def test_draw_boxes_warning():
img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
with pytest.warns(UserWarning, match=re.escape("Argument 'font_size' will be ignored since 'font' is not set.")):
utils.draw_bounding_boxes(img, boxes, font_size=11)
def test_draw_no_boxes():
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
boxes = torch.full((0, 4), 0, dtype=torch.float)
with pytest.warns(UserWarning, match=re.escape("boxes doesn't contain any box. No box was drawn")):
res = utils.draw_bounding_boxes(img, boxes)
# Check that the function didn't change the image
assert res.eq(img).all()
@pytest.mark.parametrize(
"colors",
[
None,
"blue",
"#FF00FF",
(1, 34, 122),
["red", "blue"],
["#FF00FF", (1, 34, 122)],
],
)
@pytest.mark.parametrize("alpha", (0, 0.5, 0.7, 1))
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_segmentation_masks(colors, alpha, device):
"""This test makes sure that masks draw their corresponding color where they should"""
num_masks, h, w = 2, 100, 100
dtype = torch.uint8
img = torch.randint(0, 256, size=(3, h, w), dtype=dtype, device=device)
masks = torch.zeros((num_masks, h, w), dtype=torch.bool, device=device)
masks[0, 10:20, 10:20] = True
masks[1, 15:25, 15:25] = True
overlap = masks[0] & masks[1]
out = utils.draw_segmentation_masks(img, masks, colors=colors, alpha=alpha)
assert out.dtype == dtype
assert out is not img
# Make sure the image didn't change where there's no mask
masked_pixels = masks[0] | masks[1]
assert_equal(img[:, ~masked_pixels], out[:, ~masked_pixels])
if colors is None:
colors = utils._generate_color_palette(num_masks)
elif isinstance(colors, str) or isinstance(colors, tuple):
colors = [colors]
# Make sure each mask draws with its own color
for mask, color in zip(masks, colors):
if isinstance(color, str):
color = ImageColor.getrgb(color)
color = torch.tensor(color, dtype=dtype, device=device)
if alpha == 1:
assert (out[:, mask & ~overlap] == color[:, None]).all()
elif alpha == 0:
assert (out[:, mask & ~overlap] == img[:, mask & ~overlap]).all()
interpolated_color = (img[:, mask & ~overlap] * (1 - alpha) + color[:, None] * alpha).to(dtype)
torch.testing.assert_close(out[:, mask & ~overlap], interpolated_color, rtol=0.0, atol=1.0)
interpolated_overlap = (img[:, overlap] * (1 - alpha)).to(dtype)
torch.testing.assert_close(out[:, overlap], interpolated_overlap, rtol=0.0, atol=1.0)
def test_draw_segmentation_masks_dtypes():
num_masks, h, w = 2, 100, 100
masks = torch.randint(0, 2, (num_masks, h, w), dtype=torch.bool)
img_uint8 = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8)
out_uint8 = utils.draw_segmentation_masks(img_uint8, masks)
assert img_uint8 is not out_uint8
assert out_uint8.dtype == torch.uint8
img_float = to_dtype(img_uint8, torch.float, scale=True)
out_float = utils.draw_segmentation_masks(img_float, masks)
assert img_float is not out_float
assert out_float.is_floating_point()
torch.testing.assert_close(out_uint8, to_dtype(out_float, torch.uint8, scale=True), rtol=0, atol=1)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_segmentation_masks_errors(device):
h, w = 10, 10
masks = torch.randint(0, 2, size=(h, w), dtype=torch.bool, device=device)
img = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8, device=device)
with pytest.raises(TypeError, match="The image must be a tensor"):
utils.draw_segmentation_masks(image="Not A Tensor Image", masks=masks)
with pytest.raises(ValueError, match="The image dtype must be"):
img_bad_dtype = torch.randint(0, 256, size=(3, h, w), dtype=torch.int64)
utils.draw_segmentation_masks(image=img_bad_dtype, masks=masks)
with pytest.raises(ValueError, match="Pass individual images, not batches"):
batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
utils.draw_segmentation_masks(image=batch, masks=masks)
with pytest.raises(ValueError, match="Pass an RGB image"):
one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
utils.draw_segmentation_masks(image=one_channel, masks=masks)
with pytest.raises(ValueError, match="The masks must be of dtype bool"):
masks_bad_dtype = torch.randint(0, 2, size=(h, w), dtype=torch.float)
utils.draw_segmentation_masks(image=img, masks=masks_bad_dtype)
with pytest.raises(ValueError, match="masks must be of shape"):
masks_bad_shape = torch.randint(0, 2, size=(3, 2, h, w), dtype=torch.bool)
utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
with pytest.raises(ValueError, match="must have the same height and width"):
masks_bad_shape = torch.randint(0, 2, size=(h + 4, w), dtype=torch.bool)
utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
with pytest.raises(ValueError, match="Number of colors must be equal or larger than the number of objects"):
utils.draw_segmentation_masks(image=img, masks=masks, colors=[])
with pytest.raises(ValueError, match="`colors` must be a tuple or a string, or a list thereof"):
bad_colors = np.array(["red", "blue"]) # should be a list
utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
with pytest.raises(ValueError, match="If passed as tuple, colors should be an RGB triplet"):
bad_colors = ("red", "blue") # should be a list
utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_no_segmention_mask(device):
img = torch.full((3, 100, 100), 0, dtype=torch.uint8, device=device)
masks = torch.full((0, 100, 100), 0, dtype=torch.bool, device=device)
with pytest.warns(UserWarning, match=re.escape("masks doesn't contain any mask. No mask was drawn")):
res = utils.draw_segmentation_masks(img, masks)
# Check that the function didn't change the image
assert res.eq(img).all()
def test_draw_keypoints_vanilla():
# Keypoints is declared on top as global variable
keypoints_cp = keypoints.clone()
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
img_cp = img.clone()
result = utils.draw_keypoints(
img,
keypoints,
colors="red",
connectivity=[
(0, 1),
],
)
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoint_vanilla.png")
if not os.path.exists(path):
res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
res.save(path)
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
# Check that keypoints are not modified inplace
assert_equal(keypoints, keypoints_cp)
# Check that image is not modified in place
assert_equal(img, img_cp)
def test_draw_keypoins_K_equals_one():
# Non-regression test for https://github.com/pytorch/vision/pull/8439
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
keypoints = torch.tensor([[[10, 10]]], dtype=torch.float)
utils.draw_keypoints(img, keypoints)
@pytest.mark.parametrize("colors", ["red", "#FF00FF", (1, 34, 122)])
def test_draw_keypoints_colored(colors):
# Keypoints is declared on top as global variable
keypoints_cp = keypoints.clone()
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
img_cp = img.clone()
result = utils.draw_keypoints(
img,
keypoints,
colors=colors,
connectivity=[
(0, 1),
],
)
assert result.size(0) == 3
assert_equal(keypoints, keypoints_cp)
assert_equal(img, img_cp)
@pytest.mark.parametrize("connectivity", [[(0, 1)], [(0, 1), (1, 2)]])
@pytest.mark.parametrize(
"vis",
[
torch.tensor([[1, 1, 0], [1, 1, 0]], dtype=torch.bool),
torch.tensor([[1, 1, 0], [1, 1, 0]], dtype=torch.float).unsqueeze_(-1),
],
)
def test_draw_keypoints_visibility(connectivity, vis):
# Keypoints is declared on top as global variable
keypoints_cp = keypoints.clone()
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
img_cp = img.clone()
vis_cp = vis if vis is None else vis.clone()
result = utils.draw_keypoints(
image=img,
keypoints=keypoints,
connectivity=connectivity,
colors="red",
visibility=vis,
)
assert result.size(0) == 3
assert_equal(keypoints, keypoints_cp)
assert_equal(img, img_cp)
# compare with a fakedata image
# connect the key points 0 to 1 for both skeletons and do not show the other key points
path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoints_visibility.png"
)
if not os.path.exists(path):
res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
res.save(path)
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
if vis_cp is None:
assert vis is None
else:
assert_equal(vis, vis_cp)
assert vis.dtype == vis_cp.dtype
def test_draw_keypoints_visibility_default():
# Keypoints is declared on top as global variable
keypoints_cp = keypoints.clone()
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
img_cp = img.clone()
result = utils.draw_keypoints(
image=img,
keypoints=keypoints,
connectivity=[(0, 1)],
colors="red",
visibility=None,
)
assert result.size(0) == 3
assert_equal(keypoints, keypoints_cp)
assert_equal(img, img_cp)
# compare against fakedata image, which connects 0->1 for both key-point skeletons
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoint_vanilla.png")
expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
assert_equal(result, expected)
def test_draw_keypoints_dtypes():
image_uint8 = torch.randint(0, 256, size=(3, 100, 100), dtype=torch.uint8)
image_float = to_dtype(image_uint8, torch.float, scale=True)
out_uint8 = utils.draw_keypoints(image_uint8, keypoints)
out_float = utils.draw_keypoints(image_float, keypoints)
assert out_uint8.dtype == torch.uint8
assert out_uint8 is not image_uint8
assert out_float.is_floating_point()
assert out_float is not image_float
torch.testing.assert_close(out_uint8, to_dtype(out_float, torch.uint8, scale=True), rtol=0, atol=1)
def test_draw_keypoints_errors():
h, w = 10, 10
img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
with pytest.raises(TypeError, match="The image must be a tensor"):
utils.draw_keypoints(image="Not A Tensor Image", keypoints=keypoints)
with pytest.raises(ValueError, match="The image dtype must be"):
img_bad_dtype = torch.full((3, h, w), 0, dtype=torch.int64)
utils.draw_keypoints(image=img_bad_dtype, keypoints=keypoints)
with pytest.raises(ValueError, match="Pass individual images, not batches"):
batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
utils.draw_keypoints(image=batch, keypoints=keypoints)
with pytest.raises(ValueError, match="Pass an RGB image"):
one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
utils.draw_keypoints(image=one_channel, keypoints=keypoints)
with pytest.raises(ValueError, match="keypoints must be of shape"):
invalid_keypoints = torch.tensor([[10, 10, 10, 10], [5, 6, 7, 8]], dtype=torch.float)
utils.draw_keypoints(image=img, keypoints=invalid_keypoints)
with pytest.raises(ValueError, match=re.escape("visibility must be of shape (num_instances, K)")):
one_dim_visibility = torch.tensor([True, True, True], dtype=torch.bool)
utils.draw_keypoints(image=img, keypoints=keypoints, visibility=one_dim_visibility)
with pytest.raises(ValueError, match=re.escape("visibility must be of shape (num_instances, K)")):
three_dim_visibility = torch.ones((2, 3, 4), dtype=torch.bool)
utils.draw_keypoints(image=img, keypoints=keypoints, visibility=three_dim_visibility)
with pytest.raises(ValueError, match="keypoints and visibility must have the same dimensionality"):
vis_wrong_n = torch.ones((3, 3), dtype=torch.bool)
utils.draw_keypoints(image=img, keypoints=keypoints, visibility=vis_wrong_n)
with pytest.raises(ValueError, match="keypoints and visibility must have the same dimensionality"):
vis_wrong_k = torch.ones((2, 4), dtype=torch.bool)
utils.draw_keypoints(image=img, keypoints=keypoints, visibility=vis_wrong_k)
@pytest.mark.parametrize("batch", (True, False))
def test_flow_to_image(batch):
h, w = 100, 100
flow = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
flow = torch.stack(flow[::-1], dim=0).float()
flow[0] -= h / 2
flow[1] -= w / 2
if batch:
flow = torch.stack([flow, flow])
img = utils.flow_to_image(flow)
assert img.shape == (2, 3, h, w) if batch else (3, h, w)
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "expected_flow.pt")
expected_img = torch.load(path, map_location="cpu", weights_only=True)
if batch:
expected_img = torch.stack([expected_img, expected_img])
assert_equal(expected_img, img)
@pytest.mark.parametrize(
"input_flow, match",
(
(torch.full((3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
(torch.full((5, 3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
(torch.full((2, 10), 0, dtype=torch.float), "Input flow should have shape"),
(torch.full((5, 2, 10), 0, dtype=torch.float), "Input flow should have shape"),
(torch.full((2, 10, 30), 0, dtype=torch.int), "Flow should be of dtype torch.float"),
),
)
def test_flow_to_image_errors(input_flow, match):
with pytest.raises(ValueError, match=match):
utils.flow_to_image(flow=input_flow)
if __name__ == "__main__":
pytest.main([__file__])
|