1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#include "../ps_roi_align.h"
#include <torch/autograd.h>
#include <torch/types.h>
namespace vision {
namespace ops {
namespace {
class PSROIAlignFunction
: public torch::autograd::Function<PSROIAlignFunction> {
public:
static torch::autograd::variable_list forward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::Variable& input,
const torch::autograd::Variable& rois,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
int64_t sampling_ratio) {
ctx->saved_data["spatial_scale"] = spatial_scale;
ctx->saved_data["pooled_height"] = pooled_height;
ctx->saved_data["pooled_width"] = pooled_width;
ctx->saved_data["sampling_ratio"] = sampling_ratio;
ctx->saved_data["input_shape"] = input.sym_sizes();
at::AutoDispatchBelowADInplaceOrView g;
auto result = ps_roi_align_symint(
input,
rois,
spatial_scale,
pooled_height,
pooled_width,
sampling_ratio);
auto output = std::get<0>(result);
auto channel_mapping = std::get<1>(result);
ctx->save_for_backward({rois, channel_mapping});
ctx->mark_non_differentiable({channel_mapping});
return {output, channel_mapping};
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::variable_list& grad_output) {
// Use data saved in forward
auto saved = ctx->get_saved_variables();
auto rois = saved[0];
auto channel_mapping = saved[1];
auto input_shape = ctx->saved_data["input_shape"].toList();
auto grad_in = detail::_ps_roi_align_backward_symint(
grad_output[0],
rois,
channel_mapping,
ctx->saved_data["spatial_scale"].toDouble(),
ctx->saved_data["pooled_height"].toSymInt(),
ctx->saved_data["pooled_width"].toSymInt(),
ctx->saved_data["sampling_ratio"].toInt(),
input_shape[0].get().toSymInt(),
input_shape[1].get().toSymInt(),
input_shape[2].get().toSymInt(),
input_shape[3].get().toSymInt());
return {
grad_in,
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable()};
}
};
// TODO: There should be an easier way to do this
class PSROIAlignBackwardFunction
: public torch::autograd::Function<PSROIAlignBackwardFunction> {
public:
static torch::autograd::variable_list forward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::Variable& grad,
const torch::autograd::Variable& rois,
const torch::autograd::Variable& channel_mapping,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
int64_t sampling_ratio,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
at::AutoDispatchBelowADInplaceOrView g;
auto grad_in = detail::_ps_roi_align_backward_symint(
grad,
rois,
channel_mapping,
spatial_scale,
pooled_height,
pooled_width,
sampling_ratio,
batch_size,
channels,
height,
width);
return {grad_in};
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::variable_list& grad_output) {
TORCH_CHECK(0, "double backwards on ps_roi_align not supported");
}
};
std::tuple<at::Tensor, at::Tensor> ps_roi_align_autograd(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
int64_t sampling_ratio) {
auto result = PSROIAlignFunction::apply(
input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
return std::make_tuple(result[0], result[1]);
}
at::Tensor ps_roi_align_backward_autograd(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& channel_mapping,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
int64_t sampling_ratio,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
return PSROIAlignBackwardFunction::apply(
grad,
rois,
channel_mapping,
spatial_scale,
pooled_height,
pooled_width,
sampling_ratio,
batch_size,
channels,
height,
width)[0];
}
} // namespace
TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
m.impl(
TORCH_SELECTIVE_NAME("torchvision::ps_roi_align"),
TORCH_FN(ps_roi_align_autograd));
m.impl(
TORCH_SELECTIVE_NAME("torchvision::_ps_roi_align_backward"),
TORCH_FN(ps_roi_align_backward_autograd));
}
} // namespace ops
} // namespace vision
|