File: roi_align_kernel.cpp

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (167 lines) | stat: -rw-r--r-- 4,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "../roi_align.h"

#include <torch/autograd.h>
#include <torch/types.h>

namespace vision {
namespace ops {

namespace {

class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
      int64_t sampling_ratio,
      bool aligned) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["aligned"] = aligned;
    ctx->saved_data["input_shape"] = input.sym_sizes();
    ctx->save_for_backward({rois});
    at::AutoDispatchBelowADInplaceOrView g;
    auto result = roi_align_symint(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        aligned);
    return {result};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto input_shape = ctx->saved_data["input_shape"].toList();
    auto grad_in = detail::_roi_align_backward_symint(
        grad_output[0],
        rois,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toSymInt(),
        ctx->saved_data["pooled_width"].toSymInt(),
        input_shape[0].get().toSymInt(),
        input_shape[1].get().toSymInt(),
        input_shape[2].get().toSymInt(),
        input_shape[3].get().toSymInt(),
        ctx->saved_data["sampling_ratio"].toInt(),
        ctx->saved_data["aligned"].toBool());
    return {
        grad_in,
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable()};
  }
};

// TODO: There should be an easier way to do this
class ROIAlignBackwardFunction
    : public torch::autograd::Function<ROIAlignBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
      c10::SymInt batch_size,
      c10::SymInt channels,
      c10::SymInt height,
      c10::SymInt width,
      int64_t sampling_ratio,
      bool aligned) {
    at::AutoDispatchBelowADInplaceOrView g;
    auto result = detail::_roi_align_backward_symint(
        grad,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width,
        sampling_ratio,
        aligned);
    return {result};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_align not supported");
  }
};

at::Tensor roi_align_autograd(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
  return ROIAlignFunction::apply(
      input,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      aligned)[0];
}

at::Tensor roi_align_backward_autograd(
    const at::Tensor& grad,
    const at::Tensor& rois,
    double spatial_scale,
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
    c10::SymInt batch_size,
    c10::SymInt channels,
    c10::SymInt height,
    c10::SymInt width,
    int64_t sampling_ratio,
    bool aligned) {
  return ROIAlignBackwardFunction::apply(
      grad,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width,
      sampling_ratio,
      aligned)[0];
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_align"),
      TORCH_FN(roi_align_autograd));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
      TORCH_FN(roi_align_backward_autograd));
}

} // namespace ops
} // namespace vision