File: roi_pool_kernel.cpp

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (152 lines) | stat: -rw-r--r-- 4,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include "../roi_pool.h"

#include <torch/autograd.h>
#include <torch/types.h>

namespace vision {
namespace ops {

namespace {

class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      c10::SymInt pooled_height,
      c10::SymInt pooled_width) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["input_shape"] = input.sym_sizes();
    at::AutoDispatchBelowADInplaceOrView g;
    auto result = roi_pool_symint(
        input, rois, spatial_scale, pooled_height, pooled_width);

    auto output = std::get<0>(result);
    auto argmax = std::get<1>(result);
    ctx->save_for_backward({rois, argmax});
    ctx->mark_non_differentiable({argmax});

    return {output, argmax};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto argmax = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toList();
    auto grad_in = detail::_roi_pool_backward_symint(
        grad_output[0],
        rois,
        argmax,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toSymInt(),
        ctx->saved_data["pooled_width"].toSymInt(),
        input_shape[0].get().toSymInt(),
        input_shape[1].get().toSymInt(),
        input_shape[2].get().toSymInt(),
        input_shape[3].get().toSymInt());

    return {
        grad_in,
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable()};
  }
};

// TODO: There should be an easier way to do this
class ROIPoolBackwardFunction
    : public torch::autograd::Function<ROIPoolBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& argmax,
      double spatial_scale,
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
      c10::SymInt batch_size,
      c10::SymInt channels,
      c10::SymInt height,
      c10::SymInt width) {
    at::AutoDispatchBelowADInplaceOrView g;
    auto grad_in = detail::_roi_pool_backward_symint(
        grad,
        rois,
        argmax,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_pool not supported");
  }
};

std::tuple<at::Tensor, at::Tensor> roi_pool_autograd(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    c10::SymInt pooled_height,
    c10::SymInt pooled_width) {
  auto result = ROIPoolFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width);

  return std::make_tuple(result[0], result[1]);
}

at::Tensor roi_pool_backward_autograd(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    double spatial_scale,
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
    c10::SymInt batch_size,
    c10::SymInt channels,
    c10::SymInt height,
    c10::SymInt width) {
  return ROIPoolBackwardFunction::apply(
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width)[0];
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_pool"),
      TORCH_FN(roi_pool_autograd));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_pool_backward"),
      TORCH_FN(roi_pool_backward_autograd));
}

} // namespace ops
} // namespace vision