1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
|
/*!
******************* BEGIN Caffe Copyright Notice and Disclaimer
*****************
*
* COPYRIGHT
*
* All contributions by the University of California:
* Copyright (c) 2014-2017 The Regents of the University of California (Regents)
* All rights reserved.
*
* All other contributions:
* Copyright (c) 2014-2017, the respective contributors
* All rights reserved.
*
* Caffe uses a shared copyright model: each contributor holds copyright over
* their contributions to Caffe. The project versioning records all such
* contribution and copyright details. If a contributor wants to further mark
* their specific copyright on a particular contribution, they should indicate
* their copyright solely in the commit message of the change when it is
* committed.
*
* LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
*AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
*FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
*DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
*OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* CONTRIBUTION AGREEMENT
*
* By contributing to the BVLC/caffe repository through pull-request, comment,
* or otherwise, the contributor releases their content to the
* license and copyright terms herein.
*
***************** END Caffe Copyright Notice and Disclaimer
*********************
*
* Copyright (c) 2018 Microsoft
* Licensed under The MIT License [see LICENSE for details]
* \file modulated_deformable_im2col.cuh
* \brief Function definitions of converting an image to
* column matrix based on kernel, padding, dilation, and offset.
* These functions are mainly used in deformable convolution operators.
* \ref: https://arxiv.org/abs/1703.06211
* \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
*/
// modified from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp
#include <ATen/ATen.h>
#include <torch/library.h>
namespace vision {
namespace ops {
namespace {
const int kMaxParallelImgs = 32;
template <typename scalar_t>
scalar_t bilinear_interpolate(
const scalar_t* in,
int height,
int width,
scalar_t h,
scalar_t w) {
if (h <= -1 || height <= h || w <= -1 || width <= w) {
return 0;
}
int h_low = floor(h);
int w_low = floor(w);
int h_high = h_low + 1;
int w_high = w_low + 1;
scalar_t lh = h - h_low;
scalar_t lw = w - w_low;
scalar_t hh = 1 - lh, hw = 1 - lw;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
v1 = in[h_low * width + w_low];
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
v2 = in[h_low * width + w_high];
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
v3 = in[h_high * width + w_low];
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
v4 = in[h_high * width + w_high];
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename scalar_t>
void deformable_im2col_kernel(
int n,
const scalar_t* input,
const scalar_t* offset,
const scalar_t* mask,
int height,
int width,
int weight_h,
int weight_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int batch_sz,
int n_in_channels,
int n_offset_grps,
int out_h,
int out_w,
bool use_mask,
scalar_t* columns) {
for (int index = 0; index != n; ++index) {
const int out_x = index % out_w;
const int out_y = (index / out_w) % out_h;
const int out_b = (index / (out_w * out_h)) % batch_sz;
const int in_c = index / (out_w * out_h * batch_sz);
const int out_c = in_c * weight_h * weight_w;
int c_per_offset_grp = n_in_channels / n_offset_grps;
const int grp_idx = in_c / c_per_offset_grp;
auto columns_ptr = columns +
(out_c * (batch_sz * out_h * out_w) + out_b * (out_h * out_w) +
out_y * out_w + out_x);
auto input_ptr = input +
(out_b * (n_in_channels * height * width) + in_c * (height * width));
auto offset_ptr = offset +
(out_b * n_offset_grps + grp_idx) * 2 * weight_h * weight_w * out_h *
out_w;
auto mask_ptr = mask;
if (use_mask) {
mask_ptr += (out_b * n_offset_grps + grp_idx) * weight_h * weight_w *
out_h * out_w;
}
for (int i = 0; i < weight_h; ++i) {
for (int j = 0; j < weight_w; ++j) {
const int mask_idx = i * weight_w + j;
const int offset_idx = 2 * mask_idx;
scalar_t mask_value = 1;
if (use_mask) {
mask_value =
mask_ptr[mask_idx * (out_h * out_w) + out_y * out_w + out_x];
}
const scalar_t offset_h =
offset_ptr[offset_idx * (out_h * out_w) + out_y * out_w + out_x];
const scalar_t offset_w = offset_ptr
[(offset_idx + 1) * (out_h * out_w) + out_y * out_w + out_x];
const scalar_t y =
(out_y * stride_h - pad_h) + i * dilation_h + offset_h;
const scalar_t x =
(out_x * stride_w - pad_w) + j * dilation_w + offset_w;
*columns_ptr =
mask_value * bilinear_interpolate(input_ptr, height, width, y, x);
columns_ptr += batch_sz * out_h * out_w;
}
}
}
}
void deformable_im2col(
const at::Tensor& input,
const at::Tensor& data_offset,
const at::Tensor& data_mask,
int n_in_channels,
int height,
int width,
int weight_h,
int weight_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int out_h,
int out_w,
int parallel_imgs,
int deformable_group,
bool use_mask,
at::Tensor data_col) {
int num_kernels = n_in_channels * out_h * out_w * parallel_imgs;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "deformable_im2col", ([&] {
deformable_im2col_kernel(
num_kernels,
input.data_ptr<scalar_t>(),
data_offset.data_ptr<scalar_t>(),
data_mask.data_ptr<scalar_t>(),
height,
width,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
parallel_imgs,
n_in_channels,
deformable_group,
out_h,
out_w,
use_mask,
data_col.data_ptr<scalar_t>());
}));
}
int get_greatest_divisor_below_bound(int n, int bound) {
for (int k = bound; k > 1; --k) {
if (n % k == 0) {
return k;
}
}
return 1;
}
template <typename scalar_t>
void deformable_col2im_kernel(
int n,
const scalar_t* col,
const scalar_t* offset,
const scalar_t* mask,
int channels,
int height,
int width,
int kernel_h,
int kernel_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int batch_sz,
int n_offset_grps,
int out_h,
int out_w,
bool use_mask,
scalar_t* grad_im) {
for (int index = 0; index != n; ++index) {
const int out_x = index % out_w;
const int out_y = (index / out_w) % out_h;
const int b = (index / (out_w * out_h)) % batch_sz;
const int j = (index / (out_w * out_h * batch_sz)) % kernel_w;
const int i = (index / (out_w * out_h * batch_sz * kernel_w)) % kernel_h;
const int c = index / (out_w * out_h * batch_sz * kernel_w * kernel_h);
int c_per_offset_grp = channels / n_offset_grps;
const int offset_grp = c / c_per_offset_grp;
auto offset_ptr = offset +
(b * n_offset_grps + offset_grp) * 2 * kernel_h * kernel_w * out_h *
out_w;
auto mask_ptr = mask;
if (use_mask) {
mask_ptr += (b * n_offset_grps + offset_grp) * kernel_h * kernel_w *
out_h * out_w;
}
const int mask_idx = i * kernel_w + j;
const int offset_idx = 2 * mask_idx;
const int offset_h_ptr = ((offset_idx)*out_h + out_y) * out_w + out_x;
const int offset_w_ptr = ((offset_idx + 1) * out_h + out_y) * out_w + out_x;
const scalar_t offset_h = offset_ptr[offset_h_ptr];
const scalar_t offset_w = offset_ptr[offset_w_ptr];
scalar_t mask_value = 1;
if (use_mask) {
mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
}
const scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
const scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;
for (int dy = -1; dy <= 1; dy++) {
for (int dx = -1; dx <= 1; dx++) {
int yp = int(y) + dy;
int xp = int(x) + dx;
if (0 <= yp && yp < height && 0 <= xp && xp < width &&
std::abs(y - yp) < 1 && std::abs(x - xp) < 1) {
int grad_pos = ((b * channels + c) * height + yp) * width + xp;
scalar_t weight = (1 - std::abs(y - yp)) * (1 - std::abs(x - xp));
grad_im[grad_pos] += mask_value * weight * col[index];
}
}
}
}
}
void compute_grad_input(
const at::Tensor& columns,
const at::Tensor& offset,
const at::Tensor& mask,
int channels,
int height,
int width,
int weight_h,
int weight_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int parallel_imgs,
int n_offset_grps,
bool use_mask,
at::Tensor grad_im) {
int out_h =
(height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
int out_w =
(width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
int num_kernels =
channels * weight_h * weight_w * out_h * out_w * parallel_imgs;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
columns.scalar_type(), "compute_grad_input", ([&] {
deformable_col2im_kernel(
num_kernels,
columns.data_ptr<scalar_t>(),
offset.data_ptr<scalar_t>(),
mask.data_ptr<scalar_t>(),
channels,
height,
width,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
parallel_imgs,
n_offset_grps,
out_h,
out_w,
use_mask,
grad_im.data_ptr<scalar_t>());
}));
}
template <typename scalar_t>
scalar_t get_coordinate_weight(
const scalar_t* im_data,
int height,
int width,
scalar_t y,
scalar_t x,
bool is_y_direction) {
int y_l = floor(y);
int x_l = floor(x);
int y_h = y_l + 1;
int x_h = x_l + 1;
bool valid_y_l = 0 <= y_l && y_l < height;
bool valid_y_h = 0 <= y_h && y_h < height;
bool valid_x_l = 0 <= x_l && x_l < width;
bool valid_x_h = 0 <= x_h && x_h < width;
scalar_t zero = 0;
scalar_t v_yx = (valid_y_l && valid_x_l) ? im_data[y_l * width + x_l] : zero;
scalar_t v_yX = (valid_y_l && valid_x_h) ? im_data[y_l * width + x_h] : zero;
scalar_t v_Yx = (valid_y_h && valid_x_l) ? im_data[y_h * width + x_l] : zero;
scalar_t v_YX = (valid_y_h && valid_x_h) ? im_data[y_h * width + x_h] : zero;
if (is_y_direction) {
scalar_t dx = x - x_l;
return dx * (v_YX - v_yX) + (1 - dx) * (v_Yx - v_yx);
} else {
scalar_t dy = y - y_l;
return dy * (v_YX - v_Yx) + (1 - dy) * (v_yX - v_yx);
}
}
template <typename scalar_t>
void deformable_col2im_coord_kernel(
int n,
const scalar_t* col,
const scalar_t* im,
const scalar_t* offset,
const scalar_t* mask,
int channels,
int height,
int width,
int weight_h,
int weight_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int batch_sz,
int offset_channels,
int n_offset_grps,
int out_h,
int out_w,
bool use_mask,
scalar_t* grad_offset,
scalar_t* grad_mask) {
for (int index = 0; index != n; ++index) {
scalar_t grad_offset_val = 0;
scalar_t grad_mask_val = 0;
int w = index % out_w;
int h = (index / out_w) % out_h;
int w_w = (index / (out_w * out_h * 2)) % weight_w;
int w_h = (index / (out_w * out_h * 2 * weight_w)) % weight_h;
int c = (index / (out_w * out_h)) % offset_channels;
int b = index / (out_w * out_h * offset_channels);
const int offset_grp = c / (2 * weight_h * weight_w);
const int col_step = weight_h * weight_w;
int c_per_offset_grp = channels / n_offset_grps;
auto col_ptr = col +
offset_grp * c_per_offset_grp * weight_h * weight_w * batch_sz * out_w *
out_h;
auto im_ptr = im +
(b * n_offset_grps + offset_grp) * c_per_offset_grp * height * width;
auto offset_ptr = offset +
(b * n_offset_grps + offset_grp) * 2 * weight_h * weight_w * out_h *
out_w;
auto mask_ptr = mask;
if (use_mask) {
mask_ptr += (b * n_offset_grps + offset_grp) * weight_h * weight_w *
out_h * out_w;
}
const int offset_c = c - offset_grp * 2 * weight_h * weight_w;
const bool is_y_direction = offset_c % 2 == 0;
const int c_bound = c_per_offset_grp * weight_h * weight_w;
for (int col_c = (offset_c / 2); col_c < c_bound; col_c += col_step) {
const int col_pos = (((col_c * batch_sz + b) * out_h) + h) * out_w + w;
int out_x = col_pos % out_w;
int out_y = (col_pos / out_w) % out_h;
int j = (col_pos / (out_w * out_h * batch_sz)) % weight_w;
int i = (col_pos / (out_w * out_h * batch_sz * weight_w)) % weight_h;
const int mask_idx = i * weight_w + j;
const int offset_h_idx =
(((2 * mask_idx) * out_h + out_y) * out_w + out_x);
const int offset_w_idx =
(((2 * mask_idx + 1) * out_h + out_y) * out_w + out_x);
const scalar_t offset_h = offset_ptr[offset_h_idx];
const scalar_t offset_w = offset_ptr[offset_w_idx];
scalar_t mask_value = 1;
if (use_mask) {
mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
}
scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;
const scalar_t weight =
get_coordinate_weight(im_ptr, height, width, y, x, is_y_direction);
grad_offset_val += mask_value * weight * col_ptr[col_pos];
if (use_mask && is_y_direction) {
grad_mask_val += col_ptr[col_pos] *
bilinear_interpolate(im_ptr, height, width, y, x);
}
im_ptr += height * width;
}
grad_offset[index] = grad_offset_val;
if (use_mask && is_y_direction) {
const int idx =
((((b * n_offset_grps + offset_grp) * weight_h + w_h) * weight_w +
w_w) *
out_h +
h) *
out_w +
w;
grad_mask[idx] = grad_mask_val;
}
}
}
void compute_grad_offset_and_mask(
const at::Tensor& columns,
const at::Tensor& input,
const at::Tensor& offset,
const at::Tensor& mask,
int channels,
int height,
int width,
int weight_h,
int weight_w,
int pad_h,
int pad_w,
int stride_h,
int stride_w,
int dilation_h,
int dilation_w,
int parallel_imgs,
int n_offset_grps,
bool use_mask,
at::Tensor grad_offset,
at::Tensor grad_mask) {
int out_h =
(height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
int out_w =
(width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
int num_kernels =
out_h * out_w * 2 * weight_h * weight_w * n_offset_grps * parallel_imgs;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
columns.scalar_type(), "compute_grad_offset_and_mask", ([&] {
deformable_col2im_coord_kernel(
num_kernels,
columns.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
offset.data_ptr<scalar_t>(),
mask.data_ptr<scalar_t>(),
channels,
height,
width,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
parallel_imgs,
2 * weight_h * weight_w * n_offset_grps,
n_offset_grps,
out_h,
out_w,
use_mask,
grad_offset.data_ptr<scalar_t>(),
grad_mask.data_ptr<scalar_t>());
}));
}
std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
at::Tensor input,
at::Tensor weight,
at::Tensor offset,
at::Tensor mask,
at::Tensor grad_out,
int stride_h,
int stride_w,
int pad_h,
int pad_w,
int dilation_h,
int dilation_w,
int n_weight_grps,
int n_offset_grps,
int n_parallel_imgs,
bool use_mask) {
int batch_sz = input.size(0);
int n_in_channels = input.size(1);
int in_h = input.size(2);
int in_w = input.size(3);
n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);
long n_out_channels = weight.size(0);
int weight_h = weight.size(2);
int weight_w = weight.size(3);
long out_h =
(in_h + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
long out_w =
(in_w + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
auto grad_input = at::zeros_like(input);
auto grad_offset = at::zeros_like(offset);
auto grad_mask = at::zeros_like(mask);
if (batch_sz == 0) {
return std::make_tuple(grad_input, grad_offset, grad_mask);
}
auto columns = at::empty(
{n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
input.options());
// Separate into blocks
grad_input = grad_input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
grad_offset = grad_offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
grad_mask = grad_mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
}
grad_out = grad_out
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
out_h,
out_w})
.permute({0, 2, 3, 1, 4, 5});
weight = weight.reshape(
{n_weight_grps,
weight.size(0) / n_weight_grps,
weight.size(1),
weight.size(2),
weight.size(3)});
columns = columns.view(
{n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
columns.zero_();
// Separate into weight groups
for (int g = 0; g < n_weight_grps; g++) {
columns[g] = columns[g].addmm_(
weight[g].flatten(1).transpose(0, 1), grad_out[elt][g].flatten(1));
}
compute_grad_offset_and_mask(
columns,
input[elt],
offset[elt],
mask[elt],
n_in_channels,
in_h,
in_w,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
n_parallel_imgs,
n_offset_grps,
use_mask,
grad_offset[elt],
grad_mask[elt]);
compute_grad_input(
columns,
offset[elt],
mask[elt],
n_in_channels,
in_h,
in_w,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
n_parallel_imgs,
n_offset_grps,
use_mask,
grad_input[elt]);
}
grad_input = grad_input.view({batch_sz, n_in_channels, in_h, in_w});
grad_offset = grad_offset.view(
{batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});
if (use_mask) {
grad_mask = grad_mask.view(
{batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w});
}
return std::make_tuple(grad_input, grad_offset, grad_mask);
}
at::Tensor backward_gradient_parameters(
at::Tensor input,
const at::Tensor& weight,
at::Tensor offset,
at::Tensor mask,
const at::Tensor& grad_out,
int stride_h,
int stride_w,
int pad_h,
int pad_w,
int dilation_h,
int dilation_w,
int n_weight_grps,
int n_offset_grps,
int n_parallel_imgs,
bool use_mask) {
int batch_sz = input.size(0);
int n_in_channels = input.size(1);
int in_h = input.size(2);
int in_w = input.size(3);
n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);
long n_out_channels = weight.size(0);
int weight_h = weight.size(2);
int weight_w = weight.size(3);
long out_h = grad_out.size(2);
long out_w = grad_out.size(3);
auto grad_weight = at::zeros_like(weight);
if (batch_sz == 0) {
return grad_weight;
}
at::Tensor grad_out_buf = grad_out
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
out_h,
out_w})
.permute({0, 2, 3, 1, 4, 5})
.contiguous();
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
}
grad_weight = grad_weight.view(
{n_weight_grps,
grad_weight.size(0) / n_weight_grps,
grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3)});
auto columns = at::empty(
{n_weight_grps,
n_in_channels * weight_w * weight_h / n_weight_grps,
n_parallel_imgs * out_h * out_w},
input.options());
for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
deformable_im2col(
input[elt],
offset[elt],
mask[elt],
n_in_channels,
in_h,
in_w,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
out_h,
out_w,
n_parallel_imgs,
n_offset_grps,
use_mask,
columns);
for (int g = 0; g < n_weight_grps; g++) {
grad_weight[g] =
grad_weight[g]
.flatten(1)
.addmm_(
grad_out_buf[elt][g].flatten(1), columns[g].transpose(1, 0))
.view_as(grad_weight[g]);
}
}
grad_weight = grad_weight.view(
{grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3),
grad_weight.size(4)});
return grad_weight;
}
at::Tensor deform_conv2d_forward_kernel(
const at::Tensor& input,
const at::Tensor& weight,
const at::Tensor& offset,
const at::Tensor& mask,
const at::Tensor& bias,
int64_t stride_h,
int64_t stride_w,
int64_t pad_h,
int64_t pad_w,
int64_t dilation_h,
int64_t dilation_w,
int64_t n_weight_grps,
int64_t n_offset_grps,
bool use_mask) {
at::Tensor input_c = input.contiguous();
at::Tensor offset_c = offset.contiguous();
at::Tensor weight_c = weight.contiguous();
at::Tensor mask_c = mask.contiguous();
at::Tensor bias_c = bias.contiguous();
TORCH_CHECK(input_c.ndimension() == 4);
TORCH_CHECK(offset_c.ndimension() == 4);
TORCH_CHECK(!use_mask || mask_c.ndimension() == 4);
TORCH_CHECK(weight_c.ndimension() == 4);
TORCH_CHECK(input_c.device().is_cpu(), "input must be a CPU tensor");
int batch_sz = input_c.size(0);
int n_in_channels = input_c.size(1);
int in_h = input_c.size(2);
int in_w = input_c.size(3);
int n_parallel_imgs =
get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);
// Unpack shapes and args
int out_channels = weight_c.size(0);
int weight_h = weight_c.size(2);
int weight_w = weight_c.size(3);
int ker_h = dilation_h * (weight_h - 1) + 1;
int ker_w = dilation_w * (weight_w - 1) + 1;
int out_h = ((in_h + 2 * pad_h - ker_h) / stride_h) + 1;
int out_w = ((in_w + 2 * pad_w - ker_w) / stride_w) + 1;
TORCH_CHECK(
weight_h > 0 && weight_w > 0,
"weight_h: ",
weight_h,
" weight_w: ",
weight_w);
TORCH_CHECK(
stride_h > 0 && stride_w > 0,
"stride_h: ",
stride_h,
" stride_w: ",
stride_w);
TORCH_CHECK(pad_h >= 0 && pad_w >= 0, "pad_h: ", pad_h, " pad_w: ", pad_w);
TORCH_CHECK(
dilation_h > 0 && dilation_w > 0,
"dilation_h: ",
dilation_h,
" dilation_w: ",
dilation_w);
TORCH_CHECK(weight_c.size(1) * n_weight_grps == input_c.size(1));
TORCH_CHECK(weight_c.size(0) % n_weight_grps == 0);
TORCH_CHECK(
(offset_c.size(1) == n_offset_grps * 2 * weight_h * weight_w),
"offset.shape[1] is not valid: got: ",
offset_c.size(1),
" expected: ",
n_offset_grps * 2 * weight_h * weight_w);
TORCH_CHECK(
(!use_mask || mask_c.size(1) == n_offset_grps * weight_h * weight_w),
"mask.shape[1] is not valid: got: ",
mask_c.size(1),
" expected: ",
n_offset_grps * weight_h * weight_w);
TORCH_CHECK(input_c.size(1) % n_offset_grps == 0);
TORCH_CHECK(
(offset_c.size(0) == input_c.size(0)), "invalid batch size of offset");
TORCH_CHECK(
(offset_c.size(2) == out_h && offset_c.size(3) == out_w),
"offset output dims: (",
offset_c.size(2),
", ",
offset_c.size(3),
") - ",
"computed output dims: (",
out_h,
", ",
out_w,
")");
TORCH_CHECK(
(mask_c.size(0) == input_c.size(0)), "invalid batch size of mask");
TORCH_CHECK(
(!use_mask || (mask_c.size(2) == out_h && mask_c.size(3) == out_w)),
"mask output dims: (",
mask_c.size(2),
", ",
mask_c.size(3),
") - ",
"computed output dims: (",
out_h,
", ",
out_w,
")");
TORCH_CHECK(
out_h > 0 && out_w > 0,
"Calculated output size too small - out_h: ",
out_h,
" out_w: ",
out_w);
auto out =
at::zeros({batch_sz, out_channels, out_h, out_w}, input_c.options());
if (batch_sz == 0) {
return out;
}
// Separate batches into blocks
out = out.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
out_channels,
out_h,
out_w});
input_c = input_c.view(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
offset_c = offset_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask_c = mask_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
}
at::Tensor out_buf = at::zeros(
{batch_sz / n_parallel_imgs,
out_channels,
n_parallel_imgs * out_h,
out_w},
out.options());
// Separate channels into convolution groups
out_buf = out_buf.view(
{out_buf.size(0),
n_weight_grps,
out_buf.size(1) / n_weight_grps,
out_buf.size(2),
out_buf.size(3)});
weight_c = weight_c.view(
{n_weight_grps,
weight_c.size(0) / n_weight_grps,
weight_c.size(1),
weight_c.size(2),
weight_c.size(3)});
// Sample points and perform convolution
auto columns = at::zeros(
{n_in_channels * weight_h * weight_w, n_parallel_imgs * out_h * out_w},
input_c.options());
for (int b = 0; b < batch_sz / n_parallel_imgs; b++) {
deformable_im2col(
input_c[b],
offset_c[b],
mask_c[b],
n_in_channels,
in_h,
in_w,
weight_h,
weight_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
out_h,
out_w,
n_parallel_imgs,
n_offset_grps,
use_mask,
columns);
columns = columns.view(
{n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
for (int g = 0; g < n_weight_grps; g++) {
out_buf[b][g] = out_buf[b][g]
.flatten(1)
.addmm_(weight_c[g].flatten(1), columns[g])
.view_as(out_buf[b][g]);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
out_buf = out_buf.view(
{batch_sz / n_parallel_imgs,
out_channels,
n_parallel_imgs,
out_h,
out_w});
out_buf.transpose_(1, 2);
out.copy_(out_buf);
out = out.view({batch_sz, out_channels, out_h, out_w});
return out + bias_c.view({1, out_channels, 1, 1});
}
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor>
deform_conv2d_backward_kernel(
const at::Tensor& grad_out,
const at::Tensor& input,
const at::Tensor& weight,
const at::Tensor& offset,
const at::Tensor& mask,
const at::Tensor& bias,
int64_t stride_h,
int64_t stride_w,
int64_t pad_h,
int64_t pad_w,
int64_t dilation_h,
int64_t dilation_w,
int64_t n_weight_grps,
int64_t n_offset_grps,
bool use_mask) {
at::Tensor grad_out_c = grad_out.contiguous();
at::Tensor input_c = input.contiguous();
at::Tensor weight_c = weight.contiguous();
at::Tensor offset_c = offset.contiguous();
at::Tensor mask_c = mask.contiguous();
at::Tensor bias_c = bias.contiguous();
const int batch_sz = input_c.size(0);
const int n_parallel_imgs =
get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);
auto grad_input_and_offset_and_mask = backward_gradient_inputs(
input_c,
weight_c,
offset_c,
mask_c,
grad_out_c,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w,
n_weight_grps,
n_offset_grps,
n_parallel_imgs,
use_mask);
auto grad_input = std::get<0>(grad_input_and_offset_and_mask);
auto grad_offset = std::get<1>(grad_input_and_offset_and_mask);
auto grad_mask = std::get<2>(grad_input_and_offset_and_mask);
auto grad_weight = backward_gradient_parameters(
input_c,
weight_c,
offset_c,
mask_c,
grad_out_c,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w,
n_weight_grps,
n_offset_grps,
n_parallel_imgs,
use_mask);
auto grad_bias = at::ones_like(bias_c) * grad_out_c.sum({0, 2, 3});
return std::make_tuple(
grad_input, grad_weight, grad_offset, grad_mask, grad_bias);
}
} // namespace
TORCH_LIBRARY_IMPL(torchvision, CPU, m) {
m.impl(
TORCH_SELECTIVE_NAME("torchvision::deform_conv2d"),
TORCH_FN(deform_conv2d_forward_kernel));
m.impl(
TORCH_SELECTIVE_NAME("torchvision::_deform_conv2d_backward"),
TORCH_FN(deform_conv2d_backward_kernel));
}
} // namespace ops
} // namespace vision
|