1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#include <ATen/ATen.h>
#include <torch/library.h>
namespace vision {
namespace ops {
namespace {
template <class T>
inline void add(T* address, const T& val) {
*address += val;
}
template <typename T>
void ps_roi_pool_forward_kernel_impl(
const T* input,
const T spatial_scale,
int channels,
int height,
int width,
int pooled_height,
int pooled_width,
const T* rois,
int channels_out,
int num_rois,
T* output,
int* channel_mapping) {
for (int n = 0; n < num_rois; ++n) {
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
int roi_start_w = round(offset_rois[1] * spatial_scale);
int roi_start_h = round(offset_rois[2] * spatial_scale);
int roi_end_w = round(offset_rois[3] * spatial_scale);
int roi_end_h = round(offset_rois[4] * spatial_scale);
// Force too small ROIs to be 1x1
int roi_width = std::max(roi_end_w - roi_start_w, 1);
int roi_height = std::max(roi_end_h - roi_start_h, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
int c_in = 0;
for (int c_out = 0; c_out < channels_out; ++c_out) {
for (int ph = 0; ph < pooled_height; ++ph) {
for (int pw = 0; pw < pooled_width; ++pw) {
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend =
static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend =
static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart + roi_start_h, 0), height - 1);
hend = std::min(std::max(hend + roi_start_h, 0), height - 1);
wstart = std::min(std::max(wstart + roi_start_w, 0), width - 1);
wend = std::min(std::max(wend + roi_start_w, 0), width - 1);
bool is_empty = (hend <= hstart) || (wend <= wstart);
const T* offset_input =
input + (roi_batch_ind * channels + c_in) * height * width;
T out_sum = 0;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_index = h * width + w;
out_sum += offset_input[input_index];
}
}
int index =
((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
pw;
T bin_area = (hend - hstart) * (wend - wstart);
output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
channel_mapping[index] = c_in;
c_in++;
}
}
}
}
}
template <typename T>
void ps_roi_pool_backward_kernel_impl(
const T* grad_output,
const int* channel_mapping,
int num_rois,
const T spatial_scale,
int channels,
int height,
int width,
int pooled_height,
int pooled_width,
int channels_out,
T* grad_input,
const T* rois) {
for (int n = 0; n < num_rois; ++n) {
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
int roi_start_w = roundf(offset_rois[1] * spatial_scale);
int roi_start_h = roundf(offset_rois[2] * spatial_scale);
int roi_end_w = roundf(offset_rois[3] * spatial_scale);
int roi_end_h = roundf(offset_rois[4] * spatial_scale);
// Force too small ROIs to be 1x1
int roi_width = std::max(roi_end_w - roi_start_w, 1);
int roi_height = std::max(roi_end_h - roi_start_h, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
for (int ph = 0; ph < pooled_height; ++ph) {
for (int pw = 0; pw < pooled_width; ++pw) {
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart + roi_start_h, 0), height);
hend = std::min(std::max(hend + roi_start_h, 0), height);
wstart = std::min(std::max(wstart + roi_start_w, 0), width);
wend = std::min(std::max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
for (int c_out = 0; c_out < channels_out; ++c_out) {
int index =
((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
pw;
int c_in = channel_mapping[index];
T* grad_input_offset =
grad_input + (roi_batch_ind * channels + c_in) * height * width;
T bin_area = (hend - hstart) * (wend - wstart);
T diff_val =
is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int grad_input_index = h * width + w;
add(grad_input_offset + grad_input_index, diff_val);
}
}
}
}
}
}
}
std::tuple<at::Tensor, at::Tensor> ps_roi_pool_forward_kernel(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width) {
// Check if input tensors are CPU tensors
TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");
TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
TORCH_CHECK(
rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ps_roi_pool_forward_kernel";
at::checkAllSameType(c, {input_t, rois_t});
int num_rois = rois.size(0);
int channels = input.size(1);
int height = input.size(2);
int width = input.size(3);
TORCH_CHECK(
channels % (pooled_height * pooled_width) == 0,
"input channels must be a multiple of pooling height * pooling width");
int channels_out = channels / (pooled_height * pooled_width);
auto output = at::zeros(
{num_rois, channels_out, pooled_height, pooled_width}, input.options());
auto channel_mapping =
at::zeros(output.sizes(), input.options().dtype(at::kInt));
auto output_size = output.numel();
if (output_size == 0) {
return std::make_tuple(output, channel_mapping);
}
auto input_ = input.contiguous(), rois_ = rois.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "ps_roi_pool_forward_kernel", [&] {
ps_roi_pool_forward_kernel_impl<scalar_t>(
input_.data_ptr<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
rois_.data_ptr<scalar_t>(),
channels_out,
num_rois,
output.data_ptr<scalar_t>(),
channel_mapping.data_ptr<int>());
});
return std::make_tuple(output, channel_mapping);
}
at::Tensor ps_roi_pool_backward_kernel(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& channel_mapping,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width,
int64_t batch_size,
int64_t channels,
int64_t height,
int64_t width) {
// Check if input tensors are CPU tensors
TORCH_CHECK(grad.device().is_cpu(), "grad must be a CPU tensor");
TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
TORCH_CHECK(
channel_mapping.device().is_cpu(),
"channel_mapping must be a CPU tensor");
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
channel_mapping_t{channel_mapping, "channel_mapping", 3};
at::CheckedFrom c = "ps_roi_pool_backward_kernel";
at::checkAllSameType(c, {grad_t, rois_t});
auto num_rois = rois.size(0);
auto grad_input =
at::zeros({batch_size, channels, height, width}, grad.options());
// handle possibly empty gradients
if (grad.numel() == 0) {
return grad_input;
}
int channels_out = channels / (pooled_height * pooled_width);
auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad.scalar_type(), "ps_roi_pool_backward_kernel", [&] {
ps_roi_pool_backward_kernel_impl<scalar_t>(
grad_.data_ptr<scalar_t>(),
channel_mapping.data_ptr<int>(),
num_rois,
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
channels_out,
grad_input.data_ptr<scalar_t>(),
rois_.data_ptr<scalar_t>());
});
return grad_input;
}
} // namespace
TORCH_LIBRARY_IMPL(torchvision, CPU, m) {
m.impl(
TORCH_SELECTIVE_NAME("torchvision::ps_roi_pool"),
TORCH_FN(ps_roi_pool_forward_kernel));
m.impl(
TORCH_SELECTIVE_NAME("torchvision::_ps_roi_pool_backward"),
TORCH_FN(ps_roi_pool_backward_kernel));
}
} // namespace ops
} // namespace vision
|